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Abstract

Of�ine or batch reinforcement learning seeks to
learn a near-optimal policy using history data
without active exploration of the environment.
To counter the insuf�cient coverage and sample
scarcity of many of�ine datasets, the principle of
pessimism has been recently introduced to miti-
gate high bias of the estimated values. While pes-
simistic variants of model-based algorithms (e.g.,
value iteration with lower con�dence bounds)
have been theoretically investigated, their model-
free counterparts — which do not require explicit
model estimation — have not been adequately
studied, especially in terms of sample ef�ciency.
To address this inadequacy, we study a pessimistic
variant of Q-learning in the context of �nite-
horizon Markov decision processes, and character-
ize its sample complexity under the single-policy
concentrability assumption which does not re-
quire the full coverage of the state-action space.
In addition, a variance-reduced pessimistic Q-
learning algorithm is proposed to achieve near-
optimal sample complexity. Altogether, this work
highlights the ef�ciency of model-free algorithms
in of�ine RL when used in conjunction with pes-
simism and variance reduction.

1. Introduction

Reinforcement Learning (RL) has achieved remarkable suc-
cess in recent years, including matching or surpassing hu-
man performance in robotics control and strategy games (Sil-
ver et al., 2017; Mnih et al., 2015). Nevertheless, these suc-
cess stories often come with nearly prohibitive cost, where
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an astronomical number of samples are required to train the
learning algorithm to a satisfactory level. Scaling up and
replicating the RL success in many real-world problems face
considerable challenges, due to limited access to large-scale
simulation data. In applications such as online advertising
and clinical trials, real-time data collection could be expen-
sive, time-consuming, or constrained in sample sizes as a
result of experimental limitations.

On the other hand, it is worth noting that tons of samples
might have already been accumulated and stored — albeit
not necessarily with the desired quality — during previous
data acquisition attempts. It is therefore natural to wonder
whether such history data can be leveraged to improve per-
formance in future deployments. In reality, the history data
was often obtained by executing some (possibly unknown)
behavior policy, which is typically not the desired policy.
This gives rise to the problem of of�ine RL or batch RL
(Lange et al., 2012; Levine et al., 2020),1 namely, how to
make the best use of history data to learn an improved or
even optimal policy, without further exploring the environ-
ment. In stark contrast to online RL that relies on active
interaction with the environment, the performance of of�ine
RL depends critically not only on the quantity, but also the
quality of history data (e.g., coverage over the space-action
space), given that the agent is no longer collecting new sam-
ples for the purpose of exploring the unknown environment.

Recently, the principle of pessimism (or conservatism) —
namely, being conservative in Q-function estimation when
there are not enough samples — has been put forward as
an effective way to solve of�ine RL (Buckman et al., 2020;
Kumar et al., 2020). This principle has been implemented in,
for instance, a model-based of�ine value iteration algorithm,
which modi�es classical value iteration (Azar et al., 2017)
by subtracting a penalty term in the estimated Q-values and
has been shown to achieve appealing sample ef�ciency (Jin
et al., 2021; Rashidinejad et al., 2021; Xie et al., 2021b). It
is noteworthy that the model-based approach is built upon
the construction of an empirical transition kernel, and there-
fore, requires speci�c representation of the environment
(see, e.g.Agarwal et al., 2020; Li et al., 2020). It remains

1Throughout this paper, we will be using the term of�ine RL
(resp. dataset) or batch RL (resp. dataset) interchangeably.
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Algorithm Type Sample complexity

VI-LCB
model-based H 6 SC ?

" 2(Xie et al., 2021b)
PEVI-Adv

model-based H 4 SC ?

" 2(Xie et al., 2021b)
Q-LCB

(this work)
model-free H 6 SC ?

" 2

Q-LCB-Adv
(this work)

model-free H 4 SC ?

" 2

lower bound
n/a H 4 SC ?

" 2(Xie et al., 2021b)

Table 1.Comparisons between our results and prior art for �nding
an" -optimal policy in �nite-horizon non-stationary MDPs. The
sample complexities included in the table are valid for suf�ciently
small" , with all logarithmic factors omitted.

unknown whether the pessimism principle can be incorpo-
rated into model-free algorithms — another class of popular
algorithms that performs learning without model estimation
— in a provably effective fashion for of�ine RL.

1.1. Main contributions

In this paper, we consider �nite-horizon non-stationary
Markov decision processes (MDPs) withS states,A ac-
tions, and horizon lengthH . The focal point is to pin down
the sample ef�ciency for pessimistic variants of model-free
algorithms, under the mild single-policy concentrability
assumption (cf. Assumption2.1) of the batch dataset intro-
duced inRashidinejad et al.(2021); Xie et al.(2021b) (in
short, this assumption captures how close the batch dataset is
to an expert dataset, and will be formally introduced in Sec-
tion 2.2). GivenK episodes of history data each of length
H (which amounts to a total number ofT = KH samples),
our main contributions are summarized as follows.

� We �rst study a natural pessimistic variant of the Q-
learning algorithm, which simply modi�es the classical
Q-learning update rule by subtracting a penalty term
(via certain lower con�dence bounds). We prove that
pessimistic Q-learning �nds an"-optimal policy as
soon as the sample sizeT exceeds the order of (up to
log factor)

H 6SC?

"2 ;

whereC? denotes the single-policy concentrability co-
ef�cient of the batch dataset. In comparison to the
minimax lower bound


�
H 4 SC ?

" 2

�
developed inXie

et al. (2021b), the sample complexity of pessimistic
Q-learning is at most a factor ofH 2 from optimal
(modulo some log factor).

� To further improve the sample ef�ciency of pessimistic
model-free algorithms, we introduce a variance-
reduced variant of pessimistic Q-learning. This al-
gorithm is guaranteed to �nd an"-optimal policy as
long as the sample sizeT is above the order of

H 4SC?

"2 +
H 5SC?

"

up to some log factor. In particular, this sample
complexity is minimax-optimal (namely, as low as
H 4 SC ?

" 2 up to log factor) for small enough" (namely,
" � (0; 1=H]). The"-range that enjoys near-optimality
is much larger compared to" �

�
0; 1=H2:5

�
estab-

lished inXie et al.(2021b) for model-based algorithms.

Both of the proposed algorithms achieve low computa-
tion cost (i.e.,O(T)) and low memory complexities (i.e.,
O(minf T; SAH g)). Additionally, more complete compar-
isons with prior sample complexities of pessimistic model-
based algorithms (Xie et al., 2021b) are provided in Table1.
In comparison with model-based algorithms, model-free
algorithms require drastically different technical tools to
handle the complicated statistical dependency between the
estimated Q-values at different time steps.

1.2. Related works

In this section, we discuss several lines of works which are
related to ours, with an emphasis on value-based algorithms
for tabular settings with �nite state and action spaces.

Of�ine RL. One of the key challenges in of�ine RL lies
in the insuf�cient coverage of the batch dataset, due to lack
of interaction with the environment (Levine et al., 2020;
Liu et al., 2020). To address this challenge, most of the
recent works can be divided into two lines: 1) regularizing
the policy to avoid visiting under-covered state and action
pairs (Fujimoto et al., 2019; Dadashi et al., 2021); 2) penal-
izing the estimated values of the under-covered state-action
pairs (Buckman et al., 2020; Kumar et al., 2020). Our work
follows the latter line (also known as the principle of pes-
simism), which has garnered signi�cant attention recently.
In fact, pessimism has been incorporated into recent develop-
ment of various of�ine RL approaches, such as policy-based
approaches (Rezaeifar et al., 2021; Xie et al., 2021a; Zanette
et al., 2021), model-based approaches (Rashidinejad et al.,
2021; Uehara & Sun, 2021; Jin et al., 2021; Yu et al., 2020;
Kidambi et al., 2020; Xie et al., 2021b; Yin & Wang, 2021;
Uehara et al., 2021; Yan et al., 2022b; Yu et al., 2021b;
Yin et al., 2022), and model-free approaches (Kumar et al.,
2020; Yu et al., 2021a; Yan et al., 2022a).

Finite-sample guarantees for pessimistic approaches.
While model-free approaches with pessimism (Kumar et al.,



Pessimistic Q-Learning for Of�ine Reinforcement Learning: Towards Optimal Sample Complexity

2020; Yu et al., 2021a) have achieved considerable empir-
ical successes in of�ine RL, prior theoretical guarantees
of pessimistic schemes have been con�ned almost exclu-
sively to model-based approaches. Under the same single-
policy concentrability assumption used in prior analyses
of model-based approaches (Rashidinejad et al., 2021; Xie
et al., 2021b; Yin et al., 2021b), the current paper provides
the �rst �nite-sample guarantees for model-free approaches
with pessimism in the tabular case without explicit model
construction. In addition,Yin & Wang (2021) directly em-
ployed the occupancy distributions of the behavior policy
and the optimal policy in bounding the performance of a
model-based approach, rather than the worst-case upper
bound of their ratios as done under the single-policy con-
centrability assumption.

Non-asymptotic guarantees for variants of Q-learning.
Q-learning, which is among the most famous model-free RL
algorithms (Watkins, 1989; Jaakkola et al., 1994; Watkins
& Dayan, 1992), has been adapted in a multitude of ways
to deal with different RL settings. Theoretical analyses for
Q-learning and its variants have been established in, for
example, the online setting via regret analysis (Jin et al.,
2018; Bai et al., 2019; Zhang et al., 2020b; Li et al., 2021b;
Dong et al., 2019; Zhang et al., 2020a;c; Jafarnia-Jahromi
et al., 2020; Yang et al., 2021), and the simulator setting via
probably approximately correct (PAC) bounds (Chen et al.,
2020; Wainwright, 2019; Li et al., 2021a). The variant that
is most closely related to ours is asynchronous Q-learning,
which aims to �nd the optimal Q-function from Markovian
trajectories following some behavior policy (Even-Dar &
Mansour, 2003; Beck & Srikant, 2012; Qu & Wierman,
2020; Li et al., 2021c; Yin et al., 2021a;b). Different from
ours, these works typically require full coverage of the state-
action space by the behavior policy, a much stronger as-
sumption than the single-policy concentrability assumed in
our of�ine RL setting.

Variance reduction in RL. Variance reduction, originally
proposed to accelerate stochastic optimization (e.g., the
SVRG algorithm proposed byJohnson & Zhang(2013)),
has been successfully leveraged to improve the sample ef�-
ciency of various RL algorithms, including but not limited
to policy evaluation (Du et al., 2017; Wai et al., 2019; Xu
et al., 2019; Khamaru et al., 2020), planning (Sidford et al.,
2018a;b), Q-learning and its variants (Wainwright, 2019;
Zhang et al., 2020b; Li et al., 2021b;c; Yan et al., 2022a),
and of�ine RL (Xie et al., 2021b; Yin et al., 2021b).

1.3. Notation and paper organization

Let us introduce a set of notation that will be used through-
out. We denote by�( S) the probability simplex over a set
S, and introduce the notation[N ] := f 1; � � � ; N g for any

integerN > 0. For any vectorx 2 RSA (resp.x 2 RS ) that
constitutes certain values for each of the state-action pairs
(resp. state), we shall often usex(s; a) (resp.x(s)) to denote
the entry associated with the(s; a) pair (resp. states). Sim-
ilarly, we shall denote byx := f xh gh2 [H ] the set composed
of certain vectors for each of the time steph 2 [H ]. We
let ei represent thei -th standard basis vector, with the only
non-zero element being in thei -th entry.

Let X := ( S; A; H; T ). The notationf (X ) . g(X )
(resp.f (X ) & g(X )) means that there exists a universal con-
stantC0 > 0 such thatjf (X )j � C0jg(X )j (resp.jf (X )j �
C0jg(X )j). In addition, we often overload scalar functions
and expressions to take vector-valued arguments, with the
interpretation that they are applied in an entrywise man-
ner. For example, for a vectorx = [ x i ]1� i � n , we have
x2 = [ x2

i ]1� i � n . For any two vectorsx = [ x i ]1� i � n and
y = [ yi ]1� i � n , the notationx � y (resp.x � y) means
x i � yi (resp.x i � yi ) for all 1 � i � n.

Paper organization. The rest of this paper is organized
as follows. Section2 introduces the backgrounds on �nite-
horizon MDPs and formulates the of�ine RL problem. Sec-
tion 3 starts by introducing a natural pessimistic variant of
Q-learning along with its sample complexity bound, and fur-
ther enhances the sample ef�ciency via variance reduction
in Section4. SectionA presents the proof outline and key
lemmas. Finally, we conclude in Section5 with a discussion
and defer the proof details to the supplementary material.

2. Background and problem formulation

2.1. Tabular �nite-horizon MDPs

Basics. This work focuses on an episodic �nite-horizon
MDP as represented by

M =
�
S; A ; H; f Ph gH

h=1 ; f r h gH
h=1

�
;

whereH is the horizon length,S is a �nite state space of
cardinalityS, A is a �nite action space of cardinalityA, and
Ph : S � A ! �( S) (resp.r h : S � A ! [0; 1]) represents
the probability transition kernel (resp. reward function) at
theh-th time step(1 � h � H ). Throughout this paper, we
shall adopt the following convenient notation

Ph;s;a := Ph (� j s; a) 2 [0; 1]1� S ; (1)

which stands for the transition probability vector given the
current state-action pair(s; a) at time steph. The parame-
tersS, A andH can all be quite large, allowing one to cap-
ture the challenges arising in MDPs with large state/action
space and long horizon.

A policy (or action selection rule) of an agent is represented
by � = f � h gH

h=1 , where� h : S ! �( A ) speci�es the
associated selection probability over the action space at
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time steph (or more precisely, we let� h (a j s) represent the
probability of selecting actiona in states at steph). When�
is a deterministic policy, we abuse the notation and let� h (s)
denote the action selected by policy� in states at steph.
In each episode, the agent generates an initial states1 2 S
drawn from an initial state distribution� 2 �( S), and rolls
out a trajectory over the MDP by executing a policy� as
follows:

f sh ; ah ; rh gH
h=1 = f s1; a1; r 1; : : : ; sH ; aH ; rH g; (2)

where at time steph, ah � � h (� j sh ) indicates the action
selected in statesh , r h = r h (sh ; ah ) denotes the determin-
istic immediate reward, andsh+1 denotes the next state
drawn from the transition probability vectorPh;s h ;a h

:=
Ph (� j sh ; ah ). In addition, letd�

h (s) andd�
h (s; a) denote

respectively the occupancy distribution induced by� at time
steph 2 [H ], namely,

d�
h (s) := P(sh = s j s1 � �; � );

d�
h (s; a) := P(sh = s j s1 � �; � ) � h (a j s); (3)

here and throughout, we denote[H ] := f 1; � � � ; H g. Given
that the initial states1 is drawn from� , the above de�nition
gives

d�
1 (s) = � (s) for any policy�: (4)

Value function, Q-function, and optimal policy. The
value functionV �

h (s) of policy � in states at steph is
de�ned as the expected cumulative rewards when this policy
is executed starting from states at steph, i.e.,

V �
h (s) := E

"
HX

t = h

r t
�
st ; at

� �
�
� sh = s

#

; (5)

where the expectation is taken over the randomness of the
trajectory(2) induced by the policy� as well as the MDP
transitions. Similarly, the Q-functionQ�

h (�; �) of a policy�
at steph is de�ned as

Q�
h (s; a) := r h (s; a)

+ E

"
HX

t = h+1

r t (st ; at )
�
�
� sh = s; ah = a

#

; (6)

where the expectation is again over the randomness induced
by � and the MDP except that the state-action pair at step
h is now conditioned to be(s; a). By convention, we shall
also set

V �
H +1 (s) = Q�

H +1 (s; a) = 0 for any� and(s; a) 2 S�A :
(7)

A policy � ? = f � ?
h gH

h=1 is said to be an optimal policy if
it maximizes the value function (resp. Q-function)simul-
taneouslyfor all states (resp. state-action pairs) among all

policies, whose existence is always guaranteed (Puterman,
2014). The resulting optimal value functionV ? = f V ?

h gH
h=1

and optimal Q-functionsQ? = f Q?
h gH

h=1 are denoted re-
spectively by

V ?
h (s) := V � ?

h (s) = max
�

V �
h (s);

Q?
h (s; a) := Q� ?

h (s; a) = max
�

Q�
h (s; a)

for any (s; a; h) 2 S � A � [H ]. Throughout this paper,
we assume that� ? is adeterministic optimal policy, which
always exists (Puterman, 2014).

Additionally, when the initial state is drawn from a given
distribution� , the expected value of a given policy� and
that of the optimal policy at the initial step are de�ned
respectively by

V �
1 (� ) := E

s1 � �

�
V �

1 (s1)
�
;

V ?
1 (� ) := E

s1 � �

�
V ?

1 (s1)
�
: (8)

Bellman equations. The Bellman equations play a fun-
damental role in dynamic programming (Bertsekas, 2017).
Speci�cally, the value function and the Q-function of any
policy � satisfy the following Bellman consistency equation:

Q�
h (s; a) = r h (s; a) + E

s0� Ph;s;a

�
V �

h+1 (s0)
�

(9)

for all (s; a; h) 2 S �A� [H ]. Moreover, the optimal value
function and the optimal Q-function satisfy the Bellman
optimality equation:

Q?
h (s; a) = r h (s; a) + E

s0� Ph;s;a

�
V ?

h+1 (s0)
�

(10)

for all (s; a; h) 2 S � A � [H ].

2.2. Of�ine RL under single-policy concentrability

Of�ine RL assumes the availability of a history datasetD�

containingK episodes each of lengthH . These episodes
are independently generated based on a certain policy� =
f � h gH

h=1 — called thebehavior policy, resulting in a dataset

D� :=
n�

sk
1 ; ak

1 ; r k
1 ; : : : ; sk

H ; ak
H ; r k

H

� oK � 1

k=0
:

Here, the initial statesf sk
1gK

k=1 are independently drawn

from � 2 �( S) such thatsk
1

i :i :d:� � , while the remaining
states and actions are generated by the MDP induced by
the behavior policy� . The total number of samples is thus
given by

T = KH:

With the notation(8) in place, the goal of of�ine RL amounts
to �nding an "-optimal policyb� = f b� h gH

h=1 satisfying

V ?
1 (� ) � V b�

1 (� ) � "
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with as few samples as possible, and ideally, in a computa-
tionally fast and memory-ef�cient manner.

Obviously, ef�cient of�ine RL cannot be accomplished with-
out imposing proper assumptions on the behavior policy,
which also provide means to gauge the dif�culty of the
of�ine RL task through the quality of the history dataset.
Following the recent worksRashidinejad et al.(2021); Xie
et al.(2021b), we assume that the behavior policy� satis�es
the following property calledsingle-policy concentrability.

Assumption 2.1(single-policy concentrability). The single-
policy concentrability coef�cientC? 2 [1; 1 ) of a behavior
policy � is de�ned to be the smallest quantity that satis�es

max
(h;s;a )2 [H ]�S�A

d� ?

h (s; a)
d�

h (s; a)
� C?; (11)

where we adopt the convention0=0 = 0.

Intuitively, the single-policy concentrability coef�cient mea-
sures the discrepancy between the optimal policy� ? and
the behavior policy� in terms of the resulting density ratio
of the respective occupancy distributions. It is noteworthy
that a �nite C? does not necessarily require� to cover the
entire state-action space; instead, it can be attainable when
its coverage subsumes that of the optimal policy� ?. This
is in stark contrast to, and in fact much weaker than, other
assumptions that require either full coverage of the behav-
ior policy (i.e.,min(h;s;a )2 [H ]�S�A d�

h (s; a) > 0 (Li et al.,
2021c; Yin et al., 2021a;b)), or uniform concentrability over
all possible policies (Chen & Jiang, 2019). Additionally,
the single-policy concentrability coef�cient is minimized
(i.e., C? = 1 ) when the behavior policy� coincides with
the optimal policy� ?, a scenario closely related to imitation
learning or behavior cloning (Rajaraman et al., 2020).

3. Pessimistic Q-learning: algorithms and
theory

In the current paper, we present two model-free algorithms
— namely,LCB-Q andLCB-Q-Advantage — for of�ine
RL, along with their respective theoretical guarantees. The
�rst algorithm can be viewed as a pessimistic variant of the
classical Q-learning algorithm, while the second one further
leverages the idea of variance reduction to boost the sample
ef�ciency. In this section, we begin by introducingLCB-Q.

3.1.LCB-Q: a natural pessimistic variant of Q-learning

Before proceeding, we �nd it convenient to �rst review the
classical Q-learning algorithm (Watkins, 1989; Watkins &
Dayan, 1992), which can be regarded as a stochastic approx-
imation scheme to solve the Bellman optimality equation
(10). Upon receiving a sample transition(sh ; ah ; r h ; sh+1 )
at time steph, Q-learning updates the corresponding entry

in the Q-estimate as follows

Qh (sh ; ah )  (1 � � )Qh (sh ; ah )

+ �
n

r h (sh ; ah ) + Vh+1 (sh+1 )
o

; (12)

whereQh (resp.Vh ) indicates the running estimate ofQ?
h

(resp.V ?
h ), and0 < � < 1 is the learning rate. In com-

parison to model-based algorithms that require estimating
the probability transition kernel based on all the samples,
Q-learning, as a popular kind of model-free algorithms, is
simpler and enjoys more �exibility without explicitly con-
structing the model of the environment. The wide applicabil-
ity of Q-learning motivates one to adapt it to accommodate
of�ine RL.

Inspired by recent advances in incorporating the pessimism
principle for of�ine RL (Rashidinejad et al., 2021; Jin et al.,
2021), we study a pessimistic variant of Q-learning called
LCB-Q, which modi�es the Q-learning update rule as fol-
lows

Qh (sh ; ah )  (1 � � n )Qh (sh ; ah ) (13)

+ � n

n
r h (sh ; ah ) + Vh+1 (sh+1 ) � bn

o
;

where� n is the learning rate depending on the number of
timesn that the state-action pair(sh ; ah ) has been visited
at steph, and the penalty termbn > 0 (cf. line 9 of Al-
gorithm 1) re�ects the uncertainty of the corresponding
Q-estimate and implements pessimism in the face of uncer-
tainty. The entire algorithm, which is asingle-passalgo-
rithm that only requires reading the of�ine dataset once, is
summarized in Algorithm1.

3.2. Theoretical guarantees forLCB-Q

The proposedLCB-Q algorithm manages to achieve an
appealing sample complexity as formalized by the following
theorem.

Theorem 3.1.Consider any� 2 (0; 1). Suppose that the be-
havior policy� satis�es Assumption2.1with single-policy
concentrability coef�cientC? � 1. Letcb > 0 be some suf-
�ciently large constant, and take� := log

�
SAT

�

�
. Assume

thatT > SC ?� , then the policyb� returned by Algorithm1
satis�es

V ?
1 (� ) � V b�

1 (� ) � ca

r
H 6SC?�3

T
(14)

with probability at least1 � � , whereca > 0 is some univer-
sal constant.

As asserted by Theorem3.1, theLCB-Q algorithm is guar-
anteed to �nd an"-optimal policy with high probability, as
long as the total sample sizeT = KH exceeds

eO
�

H 6SC?

"2

�
; (15)
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Algorithm 2 Of�ine LCB-Q-Advantage RL
1: Parameters:number of epochsM , universal constant

cb > 0, target success probability1 � � 2 (0; 1), and
� = log

�
SAT

�

�
;

2: Initialize: Qh (s; a); QLCB
h (s; a); Qh (s; a); � h (s; a),

� next
h (s; a), Nh (s; a)  0 for all (s; a; h) 2 S � A � [H ];

Vh (s); V h (s); V
next
h (s)  0 for all (s; h) 2 S � [H + 1] ;

� ref
h (s; a); � ref

h (s; a); � adv
h (s; a); � adv

h (s; a); � h (s; a),
B h (s; a)  0 for all (s; a; h) 2 S � A � [H ];

3: for Epochm = 1 to M do
4: L m = 2 m ; // specify the number of episodes in the current

epoch
5: bNh (s; a) = 0 for all (h; s; a) 2 [H ] � S � A : // reset the

epoch-wise counter
6: /* Inner-loop: update value-estimatesVh (s; a) and Q-

estimatesQh (s; a)
7: for In-epoch Episodet = 1 to L m do
8: Sample a trajectoryf sh ; ah ; r h gH

h=1 . // sampling
9: for Steph = 1 to H do

10: // update the overall counter
11: Nh (sh ; ah )  Nh (sh ; ah ) + 1 ; n  Nh (sh ; ah ).
12: � n  H +1

H + n ; // update the learning rate
13: // update the Q-estimate with LCB
14: QLCB

h (sh ; ah )  update-lcb-q() ;
15: // update the Q-estimate with LCB and reference-

advantage
16: Qh (sh ; ah )  update-lcb-q-ra() ;
17: // update the estimatesQh andVh

18: Qh (sh ; ah )  
19: maxf QLCB

h (sh ; ah ); Qh (sh ; ah ); Qh (sh ; ah )g:
20: Vh (sh )  maxa Qh (sh ; a).
21: // update the epoch-wise counter and� next

h for the
next epoch

22: bNh (sh ; ah )  bNh (sh ; ah ) + 1 ;

23: � next
h (sh ; ah )  

�
1 � 1

bN h ( sh ;a h )

�
� next

h (sh ; ah ) +
1

bN h ( sh ;a h )
V

next
h +1 (sh +1 ).

24: end for
25: end for
26: for (s; a; h) 2 S � A � [H + 1] do
27: // setV h and� h for the next epoch
28: V h (s)  V

next
h (s); � h (s; a)  � next

h (s; a).
29: // restart� next

h and setV
next
h for the next epoch

30: V
next
h (s)  Vh (s); � next

h (s; a)  0.
31: end for
32: end for
33: Output: the policyb� s.t. b� h (s) = arg max a Qh (s; a)

for any(s; h) 2 S � [H ].

following update rules forV h and� h are carried out at the
end of them-th epoch:

V h (s)  V
next
h (s); (18a)

Algorithm 3 Auxiliary functions
1: Function update-lcb-q() :
2: QLCB

h (sh ; ah )  (1 � � n )QLCB
h (sh ; ah ) + � n

�
r (sh ; ah ) +

Vh +1 (sh +1 ) � cb

q
H 3 � 2

n

�
.

3: Function update-lcb-q-ra() :
/* update the moment statistics of the interested terms

4: [� ref
h ; � ref

h ; � adv
h ; � adv

h ](sh ; ah )  update-moments() ;
/* update the bonus difference and accumulative bonus

5: [� h ; B h ](sh ; ah )  update-bonus() ;

6: bh (sh ; ah )  B h (sh ; ah )+(1 � � n ) � h ( sh ;a h )
� n

+ cb
H 7= 4 �
n 3= 4 +

cb
H 2 �

n ;
// update the Q-estimate based on reference-advantage

7: Qh (sh ; ah )  (1 � � n )Qh (sh ; ah ) + � n
�
r h (sh ; ah ) +

Vh +1 (sh +1 ) � V h +1 (sh +1 ) + � h (sh ; ah ) � bh
�
;

8: Function update-moments() :
9: � ref

h (sh ; ah )  (1 � 1
n )� ref

h (sh ; ah ) + 1
n V

next
h +1 (sh +1 );

// mean of the reference
10: � ref

h (sh ; ah )  (1 � 1
n )� ref

h (sh ; ah ) + 1
n

�
V

next
h +1 (sh +1 )

� 2 ;
// 2nd moment of the reference

11: � adv
h (sh ; ah )  (1 � � n )� adv

h (sh ; ah ) + � n
�
Vh +1 (sh +1 ) �

V h +1 (sh +1 )
�
; // mean of the advantage

12: � adv
h (sh ; ah )  (1 � � n )� adv

h (sh ; ah ) + � n
�
Vh +1 (sh +1 ) �

V h +1 (sh +1 )
� 2 . // 2nd moment of the advantage

13: Function update-bonus() :
14: B next

h (sh ; ah )  cb
p �

n

� q
� ref

h (sh ; ah ) �
�
� ref

h (sh ; ah )
� 2+

p
H

q
� adv

h (sh ; ah ) �
�
� adv

h (sh ; ah )
� 2

�
;

15: � h (sh ; ah )  B next
h (sh ; ah ) � B h (sh ; ah );

16: B h (sh ; ah )  B next
h (sh ; ah ):

� h (s; a)  

P L m
t =1 1(st

h = s; at
h = a)V h+1 (st

h+1 )

max
n� P L m

t =1 1(st
h = s; at

h = a)
	

; 1
o

(18b)

for all (h; s; a) 2 [H ] � S � A . Here,V h (s) is assigned by
V

next
h (s), which is maintained as the value estimateVh (s) at

the end of the(m � 1)-th epoch, and the update of� h (s; a)
is implemented in a recursive manner in the currentm-th
epoch. See also line28and line30of Algorithm 2.

Learning Q-estimate Qh based on the reference-
advantage decomposition. Armed with the references
V h and � h updated at the end of the previous(m � 1)-
th epoch,LCB-Q-Advantage iteratively updates the Q-
estimateQh in all episodes during them-th epoch. At each
time steph in any episode, whenever(s; a) is visited,LCB-
Q-Advantage updates the reference Q-value as follows:

Qh (s; a)  (1 � � )Qh (s; a) + �
n

r h (s; a)
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+ bPh;s;a
�
Vh+1 � V h+1

�

| {z }
estimate ofPh;s;a (Vh +1 � V h +1 )

+ � h|{z}
estimate ofPh;s;a V h +1

� bh (s; a)
o

:

(19)

Intuitively, we decompose the targetPh;s;a Vh+1 into a refer-
ence partPh;s;a V h+1 and an advantage partPh;s;a (Vh+1 �
V h+1 ), and cope with the two parts separately. In the sequel,
let us take a moment to discuss three essential ingredients of
the update rule(19), which shed light on the design rationale
of our algorithm.

� Akin to LCB-Q, the term bPh;s;a
�
Vh+1 � V h+1

�

serves as an unbiased stochastic estimate of
Ph;s;a

�
Vh+1 � V h+1

�
if a sample transition

(s; a; sh+1 ) at time steph is observed. IfVh+1 stays
close to the referenceV h+1 as the algorithm proceeds,
the variance of this stochastic term can be lower than
that of the stochastic termbPh;s;a Vh+1 in (13).

� The auxiliary estimate� h introduced in(18b) serves
as a running estimate of the reference partPh;s;a V h+1 .
Based on the update rule(18b), we design� h (s; a)
to estimate the running mean of the reference part�
Ph;s;a V h+1

�
using a number of previous samples. As

a result, we expect the variability of this term to be
well-controlled, particularly as the number of samples
in each epoch grows exponentially (recall thatL m =
2m ).

� In each episode, the termbh (s; a) serves as the ad-
ditional con�dence bound on the error between the
estimates of the reference/advantage and the ground
truth. More speci�cally,� ref

h (s; a) and� ref
h (s; a) are

respectively the running mean and 2nd moment of the
reference part

�
Ph;s;a V h+1

�
(cf. lines9-10 of Algo-

rithm 3); � adv
h (s; a) and � adv

h (s; a) represent respec-
tively the running mean and 2nd moment of the ad-
vantage part

�
Ph;s;a (Vh+1 � V h+1 )

�
(cf. lines11-12

of Algorithm 3); B h (s; a) aggregates the empirical
standard deviations of the reference and the advantage
parts. The LCB penalty termbh (s; a) is updated using
B h (s; a) and� h (sh ; ah ) (cf. lines5-6 of Algorithm 3),
taking into account the con�dence bounds for both the
reference and the advantage.

In a nutshell, the auxiliary sequences of the reference values
are designed to help reduce the variance of the stochastic Q-
learning updates, which taken together with the principle of
pessimism play a crucial role in the improvement of sample
complexity for of�ine RL.

4.1. Theoretical guarantees forLCB-Q-Advantage

Encouragingly, the proposedLCB-Q-Advantage algorithm
provably achieves near-optimal sample complexity for suf�-

ciently small" , as demonstrated by the following theorem.

Theorem 4.1. Consider any� 2 (0; 1), and recall that� =
log

�
SAT

�

�
andT = KH . Suppose thatcb > 0 is chosen to

be a suf�ciently large constant, and that the behavior policy
� satis�es Assumption2.1. Then there exists some universal
constantcg > 0 such that with probability at least1 � � ,
the policyb� output by Algorithm2 satis�es

V ?
1 (� ) � V b�

1 (� ) � cg

� r
H 4SC?�5

T
+

H 5SC?�4

T

�
:

(20)

As a consequence, Theorem4.1 reveals that theLCB-Q-
Advantage algorithm is guaranteed to �nd an"-optimal
policy (i.e.,V ?

1 (� ) � V b�
1 (� ) � " ) as long as the total sample

sizeT exceeds

eO
�

H 4SC?

"2 +
H 5SC?

"

�
: (21)

For suf�ciently small accuracy level" (i.e., " � 1=H), this
results in a sample complexity of

eO
�

H 4SC?

" 2

�
; (22)

thereby matching the minimax lower bound developed in
Xie et al.(2021b) up to logarithmic factor. Compared with
the minimax lower bound


�
H 4 SA

" 2

�
in the online RL set-

ting (Domingues et al., 2021), this suggests that of�ine
RL can be fairly sample-ef�cient when the behavior policy
closely mimics the optimal policy in terms of the resulting
state-action occupancy distribution (a scenario whereC? is
potentially much smaller than the size of the action space).

Comparison with of�ine model-based approaches. In
the same of�ine �nite-horizon setting, the state-of-art model-
based approach calledPEVI-Adv has been proposed byXie
et al. (2021b), which also leverage the idea of reference-
advantage decomposition. In comparison withPEVI-Adv,
LCB-Q-Advantage not only enjoys the �exibility of model-
free approaches, but also achieves optimal sample complex-
ity for a broader range of target accuracy level" . More
precisely, the"-range for which the algorithm achieves sam-
ple optimality can be compared as follows:

" �
�
0; H � 1�

| {z }
(OurLCB-Q-Advantage)

vs. " �
�
0; H � 2:5�

| {z }
(PEVI-Adv)

; (23)

offering an improvement by a factor ofH 1:5.

5. Discussions

Focusing on model-free paradigms, this paper has devel-
oped near-optimal sample complexities for some variants
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of pessimistic Q-learning algorithms — armed with lower
con�dence bounds and variance reduction — for of�ine
RL. These sample complexity results, taken together with
the analysis framework developed herein, open up a few
exciting directions for future research. For example, the
pessimistic Q-learning algorithms can be deployed in con-
junction with their optimistic counterparts (e.g.,Jin et al.
(2018); Li et al. (2021b); Zhang et al.(2020b)), when ad-
ditional online data can be acquired to �ne-tune the policy
(Xie et al., 2021b). In addition, the"-range forLCB-Q-
Advantage to attain sample optimality remains somewhat
limited (i.e.," 2 (0; 1=H])). Our concurrent workLi et al.
(2022) suggests that a new variant of pessimistic model-
based algorithm is sample-optimal for a broader range of" ,
which in turn motivates further investigation into whether
model-free algorithms can accommodate a broader" -range
too without compromising sample ef�ciency. Moving be-
yond the tabular setting, it would be of great importance to
extend the algorithmic and theoretical framework to accom-
modate low-complexity function approximation (Nguyen-
Tang et al., 2021).
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Algorithm 4 LCB-Q for of�ine RL (a rewrite of Algorithm1 to specify the dependency onk)

1: Parameters: some constantcb > 0, target success probability1 � � 2 (0; 1), and� = log
�

SAT
�

�
.

2: Initialize: Q1
h (s; a)  0; N 1

h (s; a)  0 for all (s; a; h) 2 S � A � [H ]; V 1
h (s)  0 for all (s; h) 2 S � [H + 1] ; � 1

s.t. � 1
h (s) = 1 for all (s; h) 2 S � [H ].

3: for Episodek = 1 to K do
4: Sample thek-th trajectoryf sk

h ; ak
h ; r k

h gH
h=1 from D� . // sampling from batch dataset

5: for Steph = 1 to H do
6: for (s; a) 2 S � A do
7: // carry over the estimates and policy
8: N k+1

h (s; a)  N k
h (s; a); Qk+1

h (s; a)  Qk
h (s; a); V k+1

h (s)  V k
h (s); � k+1

h (s)  � k
h (s).

9: end for
10: N k+1

h (sk
h ; ak

h )  N k
h (sk

h ; ak
h ) + 1 . // update the counter

11: n  N k+1
h (sk

h ; ak
h ); � n  H +1

H + n . // update the learning rate

12: bn  cb

q
H 3 � 2

n . // update the bonus term
13: // update the Q-estimates with LCB

14: Qk+1
h (sk

h ; ak
h )  Qk

h (sk
h ; ak

h ) + � n

n
r h (sk

h ; ak
h ) + V k

h+1 (sk
h+1 ) � Qk

h (sk
h ; ak

h ) � bn

o
:

15: // update the value estimates

16: V k+1
h (sk

h )  max
n

V k
h (sk

h ); maxa Qk+1
h (sk

h ; a)
o

.
17: // update the policy
18: If V k+1

h (sk
h ) = max a Qk+1

h (sk
h ; a): update� k+1

h (sk
h ) = arg max a Qk+1

h (sk
h ; a).

19: end for
20: end for

A. Analysis

In this section, we outline the main steps needed to establish the main results in Theorem3.1and Theorem4.1. Before
proceeding, let us �rst recall the following rescaled learning rates

� n =
H + 1
H + n

(24)

for then-th visit of a given state-action pair at a given time steph, which are adopted in bothLCB-Q andLCB-Q-Advantage.
For notational convenience, we further introduce two sequences of related quantities de�ned for any integersN � 0 and
n � 1:

� N
0 :=

( Q N
i =1 (1 � � i ) = 0 ; if N > 0;

1; if N = 0 ;
and � N

n :=

8
><

>:

� n
Q N

i = n +1 (1 � � i ); if N > n;
� n ; if N = n;
0; if N < n:

(25)

The following identity can be easily veri�ed:

NX

n =0

� N
n = 1 : (26)

A.1. Analysis ofLCB-Q

To begin with, we intend to derive a recursive formula concerning the update rule ofQk
h — the estimate of the Q-function

at steph at the beginning of thek-th episode. Note that we have omitted the dependency of all quantities on the episode
indexk in Algorithm 1. For notational convenience and clearness, we rewrite Algorithm1 as Algorithm4 by specifying the
dependency on the episode indexk and shall often use the following set of short-hand notation when it is clear from context.

� N k
h (s; a), or the shorthandN k

h : the number of episodes that has visited(s; a) at steph before the beginning of thek-th
episode.
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� kn
h (s; a), or the shorthandkn : the index of the episode in which the state-action pair(s; a) is visited at steph for the

n-th times. We also adopt the convention thatk0 = 0 .

� P k
h 2 f 0; 1g1� S : a row vector corresponding to the empirical transition at steph of thek-th episode, namely,

P k
h (s) = 1

�
s = sk

h+1

�
for all s 2 S: (27)

� � k = f � k
h gH

h=1 with � k
h (s) := arg maxa Qk

h (s; a); 8(h; s) 2 [H ] � S : the deterministic greedy policy at the beginning
of thek-th episode.

� b� : the �nal outputb� of Algorithms1 corresponds to� K +1 de�ned above; for notational simplicity, we shall treatb� as
� K in our analysis, which does not affect our result at all.

Consider any state-action pair(s; a). According to the update rule in line14 of Algorithm 4, we can express (with the
assistance of the above notation)

Qk
h (s; a) = Qk N k

h +1
h (s; a) =

�
1 � � N k

h

�
Qk N k

h

h (s; a) + � N k
h

n
r h (s; a) + V k N k

h

h+1

�
sk N k

h

h+1

�
� bN k

h

o
; (28)

where the �rst identity holds sincekN k
h denotes the latest episode prior tok that visits(s; a) at steph, and the learning

rate is de�ned in(24). Note that it always holds thatk > k N k
h . Applying the above relation(28) recursively and using the

notation (25) lead to

Qk
h (s; a) = � N k

h
0 Q1

h (s; a) +
N k

hX

n =1

� N k
h

n

�
r h (s; a) + V k n

h+1

�
sk n

h+1

�
� bn

�
: (29)

As another important fact, the value estimateV k
h is monotonically non-decreasing ink, i.e.,

V k+1
h (s) � V k

h (s) for all (s; k; h) 2 S � [K ] � [H ]; (30)

which is an immediate consequence of the update rule in line16of Algorithm 4. Crucially, we observe that the iterateV k
h

forms a “pessimistic view” ofV � k

h — and in turnV ?
h — resulting from suitable design of the penalty term. This observation

is formally stated in the following lemma, with the proof postponed to SectionC.1.

Lemma A.1. Consider any� 2 (0; 1), and suppose thatcb > 0 is some suf�ciently large constant. Then with probability at
least1 � � ,

�
�
�
�
�

N k
h (s;a )X

n =1

� N k
h (s;a )

n

�
Ph;s;a � P k n (s;a )

h

�
V k n (s;a )

h+1

�
�
�
�
�

�
N k

h (s;a )X

n =1

� N k
h (s;a )

n bn (31)

holds simultaneously for all(k; h; s; a) 2 [K ] � [H ] � S � A , and

V k
h (s) � V � k

h (s) � V ?
h (s) (32)

holds simultaneously for all(k; h; s) 2 [K ] � [H ] � S .

In a nutshell, the result(32) in LemmaA.1 reveals thatV k
h is a pointwise lower bound onV � k

h andV ?
h , thereby forming

a pessimistic estimate of the optimal value function. In addition, the property(31) in LemmaA.1 essentially tells us that
the weighted sum of the penalty terms dominates the weighted sum of the uncertainty terms, which plays a crucial role
in ensuring the aforementioned pessimism property. As we shall see momentarily, LemmaA.1 forms the basis of the
subsequent proof.

We are now ready to embark on the analysis forLCB-Q, which is divided into multiple steps as follows.
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Step 1: decomposing estimation errors. With the aid of LemmaA.1, we can develop an upper bound on the performance
difference of interest in (20) as follows

V ?
1 (� ) � V b�

1 (� ) = E
s1 � �

�
V ?

1 (s1)
�

� E
s1 � �

�
V � K

1 (s1)
�

(i)
� E

s1 � �

�
V ?

1 (s1)
�

� E
s1 � �

�
V K

1 (s1)
�

(ii)
�

1
K

KX

k=1

�

E
s1 � �

�
V ?

1 (s1)
�

� E
s1 � �

�
V k

1 (s1)
�
�

=
1
K

KX

k=1

X

s2S

d� ?

1 (s)
�
V ?

1 (s) � V k
1 (s)

�
; (33)

where (i) results from LemmaA.1 (i.e.,V � K

1 (s) � V K
1 (s) for all s 2 S), (ii) follows from the monotonicity property in

(30), and the last equality holds sinced� ?

1 (s) = � (s) (cf. (4)).

We then attempt to bound the quantity on the right-hand side of(33). Given that� ? is assumed to be a deterministic policy,
we haved� ?

h (s) = d� ?

h (s; � ?(s)) . Taking this together with the relationsV k
h (s) � maxa Qk

h (s; a) � Qk
h (s; � ?

h (s)) (see
line 16of Algorithm 4) andV ?

h (s) = Q?
h (s; � ?

h (s)) , we obtain

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�
=

KX

k=1

X

s2S

d� ?

h (s; � ?
h (s))

�
V ?

h (s) � V k
h (s)

�

�
KX

k=1

X

s2S

d� ?

h (s; � ?
h (s))

�
Q?

h

�
s; � ?

h (s)
�

� Qk
h

�
s; � ?

h (s)
� �

=
KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)
�
Q?

h (s; a) � Qk
h (s; a)

�
(34)

for anyh 2 [H ], where the last identity holds since� ? is deterministic and hence

d� ?

h (s; a) = 0 for anya 6= � ?
h (s): (35)

In view of (34), we need to properly controlQ?
h (s; a) � Qk

h (s; a). By virtue of (26), we can rewriteQ?
h (s; a) as follows

Q?
h (s; a) =

N k
hX

n =0

� N k
h

n Q?
h (s; a) = � N k

h
0 Q?

h (s; a) +
N k

hX

n =1

� N k
h

n Q?
h (s; a)

= � N k
h

0 Q?
h (s; a) +

N k
hX

n =1

� N k
h

n
�
r h (s; a) + Ph;s;a V ?

h+1

�
; (36)

where the second line follows from Bellman's optimality equation (10). Combining (29) and (36) leads to

Q?
h (s; a) � Qk

h (s; a)

= � N k
h

0

�
Q?

h (s; a) � Q1
h (s; a)

�
+

N k
hX

n =1

� N k
h

n

�
Ph;s;a V ?

h+1 � V k n

h+1 (sk n

h+1 ) + bn

�

= � N k
h

0

�
Q?

h (s; a) � Q1
h (s; a)

�
+

N k
hX

n =1

� N k
h

n bn +
N k

hX

n =1

� N k
h

n Ph;s;a
�
V ?

h+1 � V k n

h+1

�
+

N k
hX

n =1

� N k
h

n
�
Ph;s;a � P k n

h

�
V k n

h+1 (37)

� � N k
h

0 H + 2
N k

hX

n =1

� N k
h

n bn +
N k

hX

n =1

� N k
h

n Ph;s;a
�
V ?

h+1 � V k n

h+1

�
; (38)



Pessimistic Q-Learning for Of�ine Reinforcement Learning: Towards Optimal Sample Complexity

where we have made use of the de�nition in(27) by recognizingP k n

h V k n

h+1 = V k n

h+1 (sk n

h+1 ) in (37), and the last inequality
follows from the factQ?

h (s; a) � Q1
h (s; a) = Q?

h (s; a) � 0 � H and the bound(31) in LemmaA.1. Substituting the above
bound into (34), we arrive at

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�
�

KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)� N k
h (s;a )

0 H + 2
KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)
N k

h (s;a )X

n =1

� N k
h (s;a )

n bn

| {z }
= : I h

+
KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)Ph;s;a

N k
h (s;a )X

n =1

� N k
h (s;a )

n
�
V ?

h+1 � V k n
h (s;a )

h+1

�
: (39)

Step 2: establishing a crucial recursion. As it turns out, the last term on the right-hand side of(39) can be used to derive
a recursive relation that connects steph with steph + 1 , as summarized in the next lemma.

Lemma A.2. With probability at least1 � � , the following recursion holds:

KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)Ph;s;a

N k
h (s;a )X

n =1

� N k
h (s;a )

n
�
V ?

h+1 � V k n
h (s;a )

h+1

�

�
�

1 +
1
H

� KX

k=1

X

s2S

d� ?

h+1 (s)
�
V ?

h+1 (s) � V k
h+1 (s)

�
+ 24

r

H 2C?K log
2H
�

+ 12HC ? log
2H
�

: (40)

LemmaA.2 taken together with (39) implies that

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�
�

�
1 +

1
H

� KX

k=1

X

s2S

d� ?

h+1 (s)
�
V ?

h+1 (s) � V k
h+1 (s)

�

+ I h + 24

r

H 2C?K log
2H
�

+ 12HC ? log
2H
�

: (41)

Invoking (41) recursively over the time stepsh = H; H � 1; � � � ; 1 with the terminal conditionV k
H +1 = V ?

H +1 = 0 , we
reach

KX

k=1

X

s2S

d� ?

1 (s)
�
V ?

1 (s) � V k
1 (s)

�
� max

h2 [H ]

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�

�
HX

h=1

�
1 +

1
H

� h� 1
 

I h + 24

r

H 2C?K log
2H
�

+ 12HC ? log
2H
�

!

; (42)

which captures the estimation error resulting from the use of pessimism principle.

Step 3: controlling the right-hand side of (42). The right-hand side of(42) can be bounded through the following
lemma, which will be proved in AppendixC.3.

Lemma A.3. Consider any� 2 (0; 1). With probability at least1 � � , we have

HX

h=1

�
1 +

1
H

� h� 1
 

I h + 24

r

H 2C?K log
2H
�

+ 12HC ? log
2H
�

!

. H 2SC?� +
p

H 5SC?K� 3; (43)

where we recall that� := log
�

SAT
�

�
.

Combining LemmaA.3 with (42) and (33) yields

V ?
1 (� ) � V b�

1 (� ) �
1
K

KX

k=1

X

s2S

d� ?

1 (s)
�
V ?

1 (s) � V k
1 (s)

�
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�
1
K

max
h2 [H ]

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�

�
ca

2

r
H 5SC?�3

K
+

ca

2
H 2SC?�

K
=

ca

2

r
H 6SC?�3

T
+

ca

2
H 3SC?�

T

� ca

r
H 6SC?�3

T
(44)

for some suf�ciently large constantca > 0, where the last inequality is valid as long asT > SC ?� . This concludes the proof
of Theorem3.1.

A.2. Analysis ofLCB-Q-Advantage

We now turn to the analysis ofLCB-Q-Advantage. Thus far, we have omitted the dependency of all quantities on the epoch
numberm and the in-epoch episode numbert in Algorithms2 and3. While it allows for a more concise description of our
algorithm, it might hamper the clarity of our proofs. In the following, we introduce the notationk to denote the current
episode as follows:

k :=
m � 1X

i =1

L i + t; (45)

which corresponds to thet-th in-epoch episode in them-th epoch; here,L m = 2 m stands for the total number of in-epoch
episodes in them-th epoch. With this notation in place, we can rewrite Algorithm2 as Algorithm5 in order to make clear
the dependency on the episode indexk, epoch numberm, and in-epoch episode indext.

Before embarking on our main proof, we make two crucial observations which play important roles in our subsequent
analysis. First, similar to the property(30) for LCB-Q, the update rule (cf. lines19-20of Algorithm 5) ensures the monotonic
non-decreasing property ofVh (s) such that for allk 2 [K ],

V k+1
h (s) � V k

h (s); for all (k; s; h) 2 [K ] � S � [H ]: (46)

Secondly,V k
h forms a “pessimistic view” ofV ?

h , which is formalized in the lemma below; the proof is deferred to
AppendixD.1.

Lemma A.4. Let � 2 (0; 1). Suppose thatcb > 0 is some suf�ciently large constant. Then with probability at least1 � � ,
the value estimates produced by Algorithm2 satisfy

V k
h (s) � V � k

h (s) � V ?(s) (47)

for all (k; h; s) 2 [K ] � [H + 1] � S .

With these two observations in place, we can proceed to present the analysis forLCB-Q-Advantage. To begin with, the
performance difference of interest can be controlled similar to (33) as follows:

V ?
1 (� ) � V b�

1 (� ) = E
s1 � �

�
V ?

1 (s1)
�

� E
s1 � �

�
V � K

1 (s1)
�

(i)
� E

s1 � �

�
V ?

1 (s1)
�

� E
s1 � �

�
V K

1 (s1)
�

(ii)
�

1
K

KX

k=1

�

E
s1 � �

�
V ?

1 (s1)
�

� E
s1 � �

�
V k

1 (s1)
�
�

=
1
K

KX

k=1

X

s2S

d� ?

1 (s)
�
V ?

1 (s) � V k
1 (s)

�
; (48)

where (i) follows from LemmaA.4 (i.e.,V � K

1 (s) � V K
1 (s) for all s 2 S), (ii) holds due to the monotonicity in(46) and the

last equality holds sinced� ?

1 (s) = � (s) (cf. (4)). It then boils down to controlling the right-hand side of(48). Towards this
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Algorithm 5 LCB-Q-Advantage (a rewrite of Algorithm2 that speci�es dependency onk or (m; t ).)
1: Parameters: number of epochsM , universal constantcb > 0, target success probability1 � � 2 (0; 1), and

� = log
�

SAT
�

�
;

2: Initialize: Q1
h (s; a); QLCB;1

h (s; a); Q
1
h (s; a); � 1

h (s; a); � next;1
h (s; a); N 1

h (s; a)  0 for all (s; a; h) 2 S � A � [H ];

V 1
h (s); V

1
h (s); V

next;1
h (s)  0 for all (s; h) 2 S � [H + 1] ;

� ref;1
h (s; a); � ref;1

h (s; a); � adv;1
h (s; a), � adv;1

h (s; a), �
1
h (s; a); B

1
h (s; a)  0 for all (s; a; h) 2 S � A � [H ].

3: for Epochm = 1 to M do
4: L m = 2 m ; // specify the number of episodes in the current epoch
5: bN ( m; 1)

h (s; a) = 0 for all (h; s; a) 2 [H ] � S � A : // reset the epoch-wise counter
6: /* Inner-loop: update value-estimatesVh (s; a) and Q-estimatesQh (s; a)
7: for In-epoch Episodet = 1 to L m do
8: Setk  

P m � 1
i =1 L i + t: // set the episode index

9: Sample thek-th trajectoryf sk
h ; ak

h gH
h=1 . // sampling from batch dataset

10: Compute� k s.t.� k
h (s) = arg max a Qk

h (s; a) for all (s; h) 2 S � [H ]. // update the policy
11: for Steph = 1 to H do
12: for (s; a) 2 S � A do
13: // carry over the estimates
14: N k+1

h (s; a)  N k
h (s; a); bN k+1

h (s; a)  bN k
h (s; a); V k+1

h (s)  V k
h (s);

15: QLCB;k +1
h (s; a)  QLCB;k

h (s; a) Q
k+1
h (s; a)  Q

k
h (s; a); Qk+1

h (s; a)  Qk
h (s; a);

16: V
k+1
h (s)  V

k
h (s) V

next;k +1
h (s)  V

next;k
h (s); � k+1 (s; a)  � k (s; a).

17: end for
18: N k+1

h (sk
h ; ak

h )  N k
h (sk

h ; ak
h ) + 1 ; n  N k+1

h (sk
h ; ak

h ). // update the overall counter
19: � n  H +1

H + n ; // update the learning rate
20: // update the Q-estimate with LCB
21: QLCB;k +1

h (sk
h ; ak

h )  update-lcb-q() ;
22: // update the Q-estimate with LCB and reference-advantage

23: Q
k+1
h (sk

h ; ak
h )  update-lcb-q-ra() ;

24: // update the Q-estimateQh and value estimateVh

25: Qk+1
h (sk

h ; ak
h )  maxf QLCB;k +1

h (sk
h ; ak

h ); Q
k+1
h (sk

h ; ak
h ); Qk

h (sk
h ; ak

h )g:
26: V k+1

h (sk
h )  maxa Qk+1

h (sk
h ; a).

27: // update epoch-wise counter and� next
h (s; a) for the next epoch

28: bN (m;t +1)
h (sk

h ; ak
h )  bN (m;t )

h (sk
h ; ak

h ) + 1 ;

29: � next;k +1
h (sk

h ; ak
h )  

�
1 � 1

bN ( m;t +1)
h (sk

h ;a k
h )

�
� next;k

h (sh ; ah ) + 1
bN ( m;t +1)

h (sk
h ;a k

h )
V

next;k
h+1 (sh+1 ).

30: end for
31: end for
32: /* Update the reference (V h , V

next
h ) and (� h , � next

h )
33: for (s; a; h) 2 S � A � [H + 1] do

34: V
k+1
h (s)  V

next;k +1
h (s); � k+1

h (s; a)  � next;k +1
h (s; a). // setV h and� h for the next epoch

35: V
next;k +1
h (s)  V k+1

h (s); � next;k +1
h (s; a)  0. // set� next

h andV
next
h for the next epoch

36: end for
37: end for
38: Output: the policyb� = � K with K =

P M
m =1 L m .

end, it turns out that one can control a more general counterpart, i.e.,

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�
(49)

for anyh 2 [H ]. This is accomplished via the following lemma, whose proof is postponed to AppendixD.2.

Lemma A.5. Let � 2 (0; 1), and recall that� := log
�

SAT
�

�
. Suppose thatca; cb > 0 are some suf�ciently large constants.



Pessimistic Q-Learning for Of�ine Reinforcement Learning: Towards Optimal Sample Complexity

Then with probability at least1 � � , one has

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�
� J 1

h + J 2
h + J 3

h ; (50)

where

J 1
h :=

KX

k=1

X

s;a 2S�A

d� ?

h (s; a)

"

� N k
h (s;a )

0 H +
4cbH 7=4�

�
N k

h (s; a) _ 1
� 3=4

+
4cbH 2�

N k
h (s; a) _ 1

#

;

J 2
h := 2

KX

k=1

X

s;a 2S�A

d� ?

h (s; a)B
k
h (s; a);

J 3
h :=

�
1 +

1
H

� KX

k=1

X

s2S

d� ?

h+1 (s)
�
V ?

h+1 (s) � V k
h+1 (s)

�
+ 48

r

HC ?K log
2H
�

+ 28caH 3C?
p

S�2: (51)

As a direct consequence of LemmaA.5, one arrives at a recursive relationship between time stepsh andh + 1 as follows:

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�

�
�

1 +
1
H

� KX

k=1

X

s2S

d� ?

h+1 (s)
�
V ?

h+1 (s) � V k
h+1 (s)

�
+ 48

r

HC ?K log
2H
�

+ 28caH 3C?
p

S�2 + J 1
h + J 2

h : (52)

Recursing over time stepsh = H; H � 1; � � � ; 1 with the terminal conditionV k
H +1 = V ?

H +1 = 0 , we can upper bound the
performance difference ath = 1 as follows

KX

k=1

X

s2S

d� ?

1 (s)
�
V ?

1 (s) � V k
1 (s)

�
� max

h2 [H ]

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�

�
HX

h=1

�
1 +

1
H

� h� 1
 

48

r

HC ?K log
2H
�

+ 28caH 3C?
p

S�2 + J 1
h + J 2

h

!

: (53)

To �nish up, it suf�ces to upper bound each term in(53) separately. We summarize their respective upper bounds as follows;
the proof is provided in AppendixD.3.

Lemma A.6. Fix � 2 (0; 1), and recall that� := log
�

SAT
�

�
. With probability at least1 � � , we have

HX

h=1

�
1 +

1
H

� h� 1

J 1
h . H 2:75(SC?)

3
4 K

1
4 �2 + H 3SC?�3; (54a)

HX

h=1

�
1 +

1
H

� h� 1

J 2
h .

vu
u
t H 4SC?�3 max

h2 [H ]

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�
+

p
H 3SC?K� 5 + H 4SC?�4; (54b)

HX

h=1

�
1 +

1
H

� h� 1
 

48

r

HC ?K log
2H
�

+ 28caH 3C?
p

S�2
!

.

r

H 3C?K log
2H
�

+ H 4C?
p

S�2: (54c)

Substituting the above upper bounds into (48) and (53) and recalling thatT = HK , we arrive at

V ?
1 (� ) � V b�

1 (� ) .
1
K

max
h2 [H ]

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�
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.
1
K

0

@

vu
u
t H 4SC?�3 max

h2 [H ]

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�
+

� p
H 3SC?K� 5 + H 4SC?�4 + H 2:75(SC?)

3
4 K

1
4 �2

�
1

A

(i)
�

1
K

0

@

vu
u
t H 4SC?�3 max

h2 [H ]

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�
+

p
H 3SC?K� 5 + H 4SC?�4

1

A

(ii)

.
1
K

� p
H 3SC?K� 5 + H 4SC?�4

�

�

r
H 4SC?�5

T
+

H 5SC?�4

T
;

where (i) has made use of the AM-GM inequality:

2H 2:75(SC?)
3
4 K

1
4 �

�
H 0:75(SC?)

1
4 K

1
4

� 2
+

�
H 2(SC?)

1
2

� 2
=

p
H 3SC?K + H 4SC?;

and (ii) holds by lettingx := max h2 [H ]
P K

k=1

P
s2S d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�
and solving the inequalityx .p

H 4SC?�3x +
p

H 3SC?K� 5 + H 4SC?�4. This concludes the proof.

B. Technical lemmas

B.1. Preliminary facts

Our results rely heavily on proper choices of the learning rates. In what follows, we make note of several useful properties
concerning the learning rates, which have been established in (Jin et al., 2018; Li et al., 2021b).

Lemma B.1(Lemma 1 in (Li et al., 2021b)). For any integerN > 0, the following properties hold:

1
N a �

NX

n =1

� N
n

na �
2

N a for all
1
2

� a � 1; (55a)

max
1� n � N

� N
n �

2H
N

;
NX

n =1

(� N
n )2 �

2H
N

;
1X

N = n

� N
n � 1 +

1
H

: (55b)

In addition, we gather a few elementary properties about the Binomial distribution, which will be useful throughout the
proof. The lemma below is adapted fromXie et al.(2021b, Lemma A.1).

Lemma B.2. SupposeN � Binomial(n; p), wheren � 1 andp 2 [0; 1]. For any� 2 (0; 1), we have

p
N _ 1

�
8 log

�
1
�

�

n
; (56)

and

N �
np

8 log
�

1
�

� if np � 8 log
�

1
�

�
; (57a)

N �

(
e2np if np � log

�
1
�

�
;

2e2 log
�

1
�

�
if np � 2 log

�
1
�

�
:

(57b)

with probability at least1 � 4� .

Proof. To begin with, we directly invokeXie et al.(2021b, Lemma A.1) which yields the results in(56) and(57a). Regarding
(57b), invoking the Chernoff bound (Vershynin, 2018, Theorem 2.3.1) withE[N ] = np, whennp � log

�
1
�

�
, it satis�es

P(N � e2np) � e� np
�

enp
e2np

� e2 np

� e� np � �:
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Similarly, whennp � 2 log
�

1
�

�
, we have

P
�

N � 2e2 log
�

1
�

��
(i)
� e� np

 
enp

2e2 log
�

1
�

�

! 2e2 log( 1
� )

(ii)
� e� np

�
enp
e2np

� 2e2 log( 1
� )

� e� 2e2 log ( 1
� ) � �;

where (i) results fromVershynin(2018, Theorem 2.3.1), and (ii) follows from the basic facte2 log
�

1
�

�
� 2 log

�
1
�

�
� np.

Taking the union bound thus completes the proof.

B.2. Freedman's inequality and its consequences

Both the samples collected within each episode and the algorithms analyzed herein exhibit certain Markovian structure. As
a result, concentration inequalities tailored to martingales become particularly effective for our analysis. In this subsection,
we collect a few useful concentration results that will be applied multiple times in the current paper. These results might be
of independent interest.

To begin with, the following theorem provides a user-friendly version of Freedman's inequality (Freedman, 1975); seeLi
et al.(2021a, Section C) for more details.

Theorem B.3(Freedman's inequality). Consider a �ltrationF0 � F 1 � F 2 � � � � , and letEk stand for the expectation
conditioned onF k . Suppose thatYn =

P n
k=1 X k 2 R, wheref X k g is a real-valued scalar sequence obeying

jX k j � R and Ek � 1
�
X k

�
= 0 for all k � 1

for some quantityR < 1 . We also de�ne

Wn :=
nX

k=1

Ek � 1
�
X 2

k

�
:

In addition, suppose thatWn � � 2 holds deterministically for some given quantity� 2 < 1 . Then for any positive integer
m � 1, with probability at least1 � � one has

jYn j �

r

8 max
n

Wn ;
� 2

2m

o
log

2m
�

+
4
3

R log
2m
�

: (58)

We shall also record some immediate consequence of Freedman's inequality tailored to our problem. Recall thatN i
h (s; a)

denotes the number of times that(s; a) has been visited at steph before the beginning of thei -th episode, andkn (s; a)
stands for the index of the episode in which(s; a) is visited for then-th time. The following concentration bound has been
established inLi et al. (2021b, Lemma 7).

Lemma B.4. Let
�

W i
h 2 RS j 1 � i � K; 1 � h � H + 1

	
and

�
ui

h (s; a; N) 2 R j 1 � i � K; 1 � h � H + 1
	

be a
collections of vectors and scalars, respectively, and suppose that they obey the following properties:

� W i
h is fully determined by the samples collected up to the end of the(h � 1)-th step of thei -th episode;

� k W i
h k1 � Cw ;

� ui
h (s; a; N) is fully determined by the samples collected up to the end of the(h � 1)-th step of thei -th episode, and a

given positive integerN 2 [K ];

� 0 � ui
h (s; a; N) � Cu ;

� 0 �
P N k

h (s;a )
n =1 uk n

h (s;a )
h (s; a; N) � 2.

In addition, consider the following sequence

X i (s; a; h; N ) := ui
h (s; a; N)

�
P i

h � Ph;s;a
�
W i

h+1 1
�

(si
h ; ai

h ) = ( s; a)
	

; 1 � i � K; (59)
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with P i
h de�ned in(27). Consider any� 2 (0; 1). Then with probability at least1 � � ,

�
�
�
�
�

kX

i =1

X i (s; a; h; N )

�
�
�
�
�

.

r

Cu log2 SAT
�

vu
u
t

N k
h (s;a )X

n =1

u
k n

h (s;a )
h (s; a; N)Varh;s;a

�
W

k n
h (s;a )

h+1

�
+

 

CuCw +

r
Cu

N
Cw

!

log2 SAT
�

(60)

holds simultaneously for all(k; h; s; a; N ) 2 [K ] � [H ] � S � A � [K ].

Next, we make note of an immediate consequence of LemmaB.4 as follows.

Lemma B.5. Let
�

W i
h 2 RS j 1 � i � K; 1 � h � H + 1

	
be a collection of vectors satisfying the following properties:

� W i
h is fully determined by the samples collected up to the end of the(h � 1)-th step of thei -th episode;

� k W i
h k1 � Cw .

For any positiveN � H , we consider the following sequence

X i (s; a; h; N ) := � N
N i

h (s;a )

�
P i

h � Ph;s;a
�
W i

h+1 1
�

(si
h ; ai

h ) = ( s; a)
	

; 1 � i � K; (61)

with P i
h de�ned in(27). Consider any� 2 (0; 1). With probability at least1 � � ,

�
�
�
�
�

kX

i =1

X i (s; a; h; N )

�
�
�
�
�

.

r
H
N

C2
w log2 SAT

�
(62)

holds simultaneously for all(k; h; s; a; N ) 2 [K ] � [H ] � S � A � [K ].

Proof. Takingui
h (s; a; N) = � N

N i
h (s;a ) , one can see from (55b) in LemmaB.1 that

�
�ui

h (s; a; N)
�
� �

2H
N

=: Cu :

Recognizing the trivial boundVarh;s;a
�
W k n

h (s;a )
h+1

�
� C2

w , we can invoke LemmaB.4 to obtain that, with probability at least
1 � � ,

�
�
�
�
�

kX

i =1

X i (s; a; h; N )

�
�
�
�
�

.

r

Cu log2 SAT
�

vu
u
t

N k
h (s;a )X

n =1

� N
n C2

w +

 

CuCw +

r
Cu

N
Cw

!

log2 SAT
�

.

r
H
N

log2 SAT
�

� Cw +
HCw

N
log2 SAT

�
.

r
HC 2

w

N
log2 SAT

�

holds simultaneously for all(k; h; s; a; N ) 2 [K ] � [H ] � S � A � [K ], where the last line applies(55b) in LemmaB.1
once again.

Finally, we introduce another lemma by invoking Freedman's inequality in TheoremB.3.

Lemma B.6. Let
�

W k
h (s; a) 2 RS j (s; a) 2 S � A ; 1 � k � K; 1 � h � H + 1

	
be a collection of vectors satisfying

the following properties:

� W k
h (s; a) is fully determined by the given state-action pair(s; a) and the samples collected up to the end of the

(k � 1)-th episode;

� k W k
h (s; a)k1 � Cw .
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For any positiveCd � 0, we consider the following sequences

X h;k := Cd

2

4 d� ?
h (sk

h ; ak
h )

d�
h (sk

h ; ak
h )

Ph;s k
h ;a k

h
W k

h+1 (sk
h ; ak

h ) �
X

(s;a )2S�A

d� ?
h (s; a)Ph;s;a W k

h+1 (s; a)

3

5 ; 1 � k � K; (63)

X h;k := Cd

2

4 d� ?
h (sk

h ; ak
h )

d�
h (sk

h ; ak
h )

P k
h W k

h+1 (sk
h ; ak

h ) �
X

(s;a )2S�A

d� ?
h (s; a)Ph;s;a W k

h+1 (s; a)

3

5 ; 1 � k � K: (64)

Consider any� 2 (0; 1). Then with probability at least1 � � ,

�
�
�
�
�

KX

k=1

X h;k

�
�
�
�
�

�

vu
u
t

KX

k=1

8C2
d C?

X

(s;a )2S�A

d� ?
h (s; a)

�
Ph;s;a W k

h+1 (s; a)
� 2

log
2H
�

+ 2CdC?Cw log
2H
�

(65)

�
�
�
�
�

KX

k=1

X h;k

�
�
�
�
�

�

vu
u
t

KX

k=1

8C2
d C?

X

(s;a )2S�A

d� ?
h (s; a)Ph;s;a

�
W k

h+1 (s; a)
� 2

log
2H
�

+ 2CdC?Cw log
2H
�

(66)

hold simultaneously for allh 2 [H ].

Proof. We intend to apply Freedman's inequality (cf. TheoremB.3) to control
P K

k=1 X h;k . Considering any given time
steph, it is easily veri�ed that

Ek � 1[X h;k ] = 0 ; Ek � 1[X h;k ] = 0 ;

whereEk � 1 denotes the expectation conditioned on everything happening up to the end of the(k � 1)-th episode. To
continue, we observe that

jX h;k j � Cd

�
d� ?

h (sk
h ; ak

h )
d�

h (sk
h ; ak

h )
+ 1

� 
 W k

h+1 (s; a)



1 � 2CdC?Cw ; (67)

jX h;k j � Cd

�
d� ?

h (sk
h ; ak

h )
d�

h (sk
h ; ak

h )
+ 1

� 
 W k

h+1 (s; a)



1 � 2CdC?Cw ; (68)

where we use the assumptionsd� ?
h (s;a )

d�
h (s;a ) � C? for all (h; s; a) 2 [H ] �S �A (cf. Assumption2.1) and


 W k

h+1 (sk
h ; ak

h )



1
�

Cw .

Recall that�( S �A ) is the probability simplex over the setS �A of all state-action pairs, and we denote byd�
h 2 �( S �A )

the state-action visitation distribution induced by the behavior policy� at time steph 2 [H ]. With this in hand, we obtain

KX

k=1

Ek � 1[jX h;k j2] �
KX

k=1

C2
d Ek � 1

2

4 d� ?
h (sk

h ; ak
h )

d�
h (sk

h ; ak
h )

Ph;s k
h ;a k

h
W k

h+1 (sk
h ; ak

h ) �
X

(s;a )2S�A

d� ?
h (s; a)Ph;s;a W k

h+1 (s; a)

3

5

2

�
KX

k=1

C2
d E(sk

h ;a k
h ) � d�

h

�
d� ?

h (sk
h ; ak

h )
d�

h (sk
h ; ak

h )
Ph;s k

h ;a k
h
W k

h+1 (sk
h ; ak

h )
� 2

=
KX

k=1

C2
d

X

(s;a )2S�A

d� ?
h (s; a)

d�
h (s; a)

d� ?
h (s; a)

�
Ph;s;a W k

h+1 (s; a)
� 2

(i)
�

KX

k=1

C2
d C?

X

(s;a )2S�A

d� ?
h (s; a)

�
Ph;s;a W k

h+1 (s; a)
� 2

(69)

�
KX

k=1

C2
d

X

(s;a )2S�A

C?d� ?
h (s; a)


 W k

h+1 (sk
h ; ak

h )

 2

1 � C2
d C?C2

w K; (70)
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where (i) follows fromd� ?
h (s;a )

d�
h (s;a ) � C? (see Assumption2.1) and the assumption


 W k

h+1 (sk
h ; ak

h )



1
� Cw .

Similarly, we can derive

KX

k=1

Ek � 1[jX h;k j2] �
KX

k=1

C2
d Ek � 1

2

4 d� ?
h (sk

h ; ak
h )

d�
h (sk

h ; ak
h )

P k
h W k

h+1 (sk
h ; ak

h ) �
X

(s;a )2S�A

d� ?
h (s; a)Ph;s;a W k

h+1 (s; a)

3

5

2

�
KX

k=1

C2
d E(sk

h ;a k
h ) � d�

h

"

EP k
h � Ph;s k

h ;a k
h

�
d� ?

h (sk
h ; ak

h )
d�

h (sk
h ; ak

h )
P k

h W k
h+1 (sk

h ; ak
h )

� 2
#

=
KX

k=1

C2
d

X

(s;a )2S�A

d� ?
h (s; a)

d�
h (s; a)

d� ?
h (s; a)EP k

h � Ph;s;a

�
P k

h W k
h+1 (s; a)

� 2

(i)
�

KX

k=1

C2
d C?

X

(s;a )2S�A

d� ?
h (s; a)EP k

h � Ph;s;a

�
P k

h W k
h+1 (s; a)

� 2
(71)

=
KX

k=1

C2
d C?

X

(s;a )2S�A

d� ?
h (s; a)Ph;s;a

�
W k

h+1 (s; a)
� 2

(72)

�
KX

k=1

C2
d

X

(s;a )2S�A

C?d� ?
h (s; a)


 W k

h+1 (s; a)

 2

1 � C2
d C?C2

w K; (73)

where (i) follows fromd� ?
h (s;a )

d�
h (s;a ) � C? (see Assumption2.1) and the assumption


 W k

h+1 (sk
h ; ak

h )



1
� Cw .

Plugging in the results in(67) and(69) (resps.(68) and(72)) to control
P K

k=1 jX h;k j (resps.
P K

k=1

�
�X h;k

�
�), we invoke

TheoremB.3 with m = dlog2 K eand take the union bound overh 2 [H ] to show that with probability at least1 � � ,

�
�
�
�
�

KX

k=1

X h;k

�
�
�
�
�

�

vu
u
u
t 8 max

8
<

:

KX

k=1

C2
d C?

X

(s;a )2S�A

d� ?
h (s; a)

�
Ph;s;a W k

h+1 (s; a)
� 2

;
C2

d C?C2
w K

2m

9
=

;
log

2H
�

+
8
3

CdC?Cw log
2H
�

�

vu
u
t

KX

k=1

8C2
d C?

X

(s;a )2S�A

d� ?
h (s; a)

�
Ph;s;a W k

h+1 (s; a)
� 2

log
2H
�

+ 6CdC?Cw log
2H
�

and

�
�
�
�
�

KX

k=1

X h;k

�
�
�
�
�

�

vu
u
u
t 8 max

8
<

:

KX

k=1

C2
d C?

X

(s;a )2S�A

d� ?
h (s; a)Ph;s;a

�
W k

h+1 (s; a)
� 2

;
C2

d C?C2
w K

2m

9
=

;
log

2H
�

+
8
3

CdC?Cw log
2H
�

�

vu
u
t

KX

k=1

8C2
d C?

X

(s;a )2S�A

d� ?
h (s; a)Ph;s;a

�
W k

h+1 (s; a)
� 2

log
2H
�

+ 6CdC?Cw log
2H
�

holds simultaneously for allh 2 [H ].
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C. Proof of main lemmas forLCB-Q (Theorem3.1)

C.1. Proof of LemmaA.1

C.1.1. PROOF OF INEQUALITY (31)

To begin with, we shall control
P N k

h (s;a )
n =1 � N k

h (s;a )
n

�
Ph;s;a � P k n (s;a )

h

�
V k n (s;a )

h+1 by invoking LemmaB.5. Let

W i
h+1 := V i

h+1 ;

which satis�es

kW i
h+1 k1 � H = : Cw :

Applying LemmaB.5 with N = N k
h (s; a) reveals that, with probability at least1 � � ,

�
�
�
�
�

N k
h (s;a )X

n =1

� N k
h (s;a )

n

�
Ph;s;a � P k n (s;a )

h

�
V k n (s;a )

h+1

�
�
�
�
�

=

�
�
�
�
�

kX

i =1

X i
�
s; a; h; N k

h (s; a)
�
�
�
�
�
�

� cb

s
H 3�2

N k
h (s; a)

(74a)

holds simultaneously for all(s; a; k; h) 2 S � A � [K ] � [H ], provided that the constantcb > 0 is large enough and that
N k

h (s; a) > 0. If N k
h (s; a) = 0 , then we have the trivial bound

�
�
�
�
�

N k
h (s;a )X

n =1

� N k
h (s;a )

n

�
Ph;s;a � P k n (s;a )

h

�
V k n (s;a )

h+1

�
�
�
�
�

= 0 : (74b)

Additionally, from the de�nitionbn = cb

q
H 3 � 2

n , we observe that

8
<

:

P N k
h (s;a )

n =1 � N k
h (s;a )

n bn 2
h
cb

q
H 3 � 2

N k
h (s;a ) ; 2cb

q
H 3 � 2

N k
h (s;a )

i
; if N k

h (s; a) > 0
P N k

h (s;a )
n =1 � N k

h (s;a )
n bn = 0 ; if N k

h (s; a) = 0
(75)

holds simultaneously for alls; a; h; k 2 S � A � [H ] � [K ], which follows directly from the property(55a) in LemmaB.1.

Combining the above bounds (74) and (75), we arrive at the advertised result

�
�
�
�
�

N k
h (s;a )X

n =1

� N k
h (s;a )

n

�
Ph;s;a � P k n (s;a )

h

�
V k n (s;a )

h+1

�
�
�
�
�

�
N k

h (s;a )X

n =1

� N k
h (s;a )

n bn :

C.1.2. PROOF OF INEQUALITY (32)

Note that the second inequality of (32) holds straightforwardly as

V �
h (s) � V ?(s)

holds for any policy� . As a consequence, it suf�ces to establish the �rst inequality of (32), namely,

V k
h (s) � V � k

h (s) for all (s; h; k) 2 S � [H ] � [K ]: (76)

Before proceeding, let us introduce the following auxiliary index

ko(h; k; s) := max
n

l : l < k andV l
h (s) = max

a
Ql

h (s; a)
o

(77)

for any(h; k; s) 2 [H ] � [K ] � S , which denotes the index of the latest episode — before the end of the(k � 1)-th episode
— in whichVh (s) has been updated. In what follows, we shall often abbreviateko(h; k; s) asko(h) whenever it is clear from
the context.
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Towards establishing the relation(76), we proceed by means of an inductive argument. In what follows, we shall �rst justify
the desired inequality for the base case whenh + 1 = H + 1 for all episodesk 2 [K ], and then use induction to complete
the argument for other cases. More speci�cally, consider any steph 2 [H ] in any episodek 2 [K ], and suppose that the �rst
inequality of (32) is satis�ed for all previous episodes as well as all stepsh0 � h + 1 in the current episode, namely,

V k 0

h0 (s) � V � k 0

h0 (s) for all (k0; h0; s) 2 [k � 1] � [H + 1] � S ; (78a)

V k
h0(s) � V � k

h0 (s) for all h0 � h + 1 ands 2 S: (78b)

We intend to justify that the following is valid

V k
h (s) � V � k

h (s) for all s 2 S; (79)

assuming that the induction hypothesis (78) holds.

Step 1: base case. Let us begin with the base case whenh + 1 = H + 1 for all episodesk 2 [K ]. Recognizing the fact
thatV �

H +1 = V k
H +1 = 0 for any� and anyk 2 [K ], we directly arrive at

V k
H +1 (s) � V � k

H +1 (s) for all (k; s) 2 [K ] � S : (80)

Step 2: induction. To justify (79) under the induction hypothesis (78), we decompose the difference term to obtain

V � k

h (s) � V k
h (s) = V � k

h (s) � max
�

max
a

Qk
h (s; a); V k � 1

h (s)
	

= Q� k

h

�
s; � k

h (s)
�

� max
�

max
a

Qk
h (s; a); V ko (h)

h (s)
	

; (81)

where the last line holds sinceVh (s) has not been updated during episodesko(h); ko(h) + 1 ; � � � ; k � 1 (in view of the
de�nition of ko(h) in (77)). We shall prove that the right-hand side of(81) is non-negative by discussing the following two
cases separately.

� Consider the case whereV k
h (s) = max a Qk

h (s; a). Before continuing, it is easily observed from the update rule in
line 16and line16of Algorithm 1 that: Vh (s) and� h (s) are updated hand-in-hand for everyh. Thus, it implies that

� k
h (s) = arg max

a
Qk

h (s; a); whenV k
h (s) = max

a
Qk

h (s; a) (82)

holds for all(k; h) 2 [K ] � [H ]. As a result, we express the term of interest as follows:

V � k

h (s) � V k
h (s) = Q� k

h

�
s; � k

h (s)
�

� max
a

Qk
h (s; a) = Q� k

h

�
s; � k

h (s)
�

� Qk
h

�
s; � k

h (s)
�
: (83)

To continue, we turn to controlling a more general termQ� k

h (s; a) � Qk
h (s; a) for all (s; a) 2 S � A . Invoking the fact

� N k
h

0 +
P N k

h
n =1 � N k

h
n = 1 (see (25) and (26)) leads to

Q� k

h (s; a) = � N k
h

0 Q� k

h (s; a) +
N k

hX

n =1

� N k
h

n Q� k

h (s; a):

This relation combined with (29) allows us to express the difference betweenQ� k

h andQk
h as follows

Q� k

h (s; a) � Qk
h (s; a) = � N k

h
0

�
Q� k

h (s; a) � Q1
h (s; a)

�
+

N k
hX

n =1

� N k
h

n

h
Q� k

h (s; a) � r h (s; a) � V k n

h+1 (sk n

h+1 ) + bn

i

(i)
= � N k

h
0

�
Q� k

h (s; a) � Q1
h (s; a)

�
+

N k
hX

n =1

� N k
h

n

h
Ph;s;a V � k

h+1 � V k n

h+1 (sk n

h+1 ) + bn

i
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(ii)
�

N k
hX

n =1

� N k
h

n

h
Ph;s;a V � k

h+1 � V k n

h+1 (sk n

h+1 ) + bn

i

(iii)
=

N k
hX

n =1

� N k
h

n Ph;s;a

�
V � k

h+1 � V k n

h+1

�
+

N k
hX

n =1

� N k
h

n

h�
Ph;s;a � P k n

h

�
V k n

h+1 + bn

i

(iv)
�

N k
hX

n =1

� N k
h

n

h�
Ph;s;a � P k n

h

�
V k n

h+1 + bn

i
: (84)

Here, (i) invokes the Bellman equationQ� k

h (s; a) = r h (s; a)+ Ph;s;a V � k

h+1 ; (ii) holds sinceQ� k

h (s; a) � 0 = Q1
h (s; a);

(iii) relies on the notaion (27); and (iv) comes from the fact

V � k

h+1 � V k
h+1 � V k n

h+1 ;

owing to the induction hypothesis in(78) as well as the monotonicity ofVh+1 in (30). Consequently, it follows from
(84) that

Q� k

h (s; a) � Qk
h (s; a) �

N k
h (s;a )X

n =1

� N k
h (s;a )

n

�
Ph;s;a � P k n (s;a )

h

�
V k n (s;a )

h+1 +
N k

h (s;a )X

n =1

� N k
h (s;a )

n bn

�
N k

h (s;a )X

n =1

� N k
h (s;a )

n bn �

�
�
�
�
�

N k
h (s;a )X

n =1

� N k
h (s;a )

n

�
Ph;s;a � P k n (s;a )

h

�
V k n (s;a )

h+1

�
�
�
�
�

� 0 (85)

for all state-action pair(s; a), where the last inequality holds due to the bound(31) in LemmaA.1. Plugging the above
result into (83) directly establishes that

V � k

h (s) � V k
h (s) = Q� k

h

�
s; � k (s)

�
� Qk

h

�
s; � k (s)

�
� 0: (86)

� WhenV k
h (s) = V ko (h)

h (s), it indicates that

V ko (h)
h (s) = max

a
Qko (h)

h (s; a); � ko (h)
h (s) = arg max

a
Qko (h)

h (s; a); (87)

which follows from the de�nition ofko(h) in (77) and the corresponding fact in(82). We also make note of the fact that

� k
h (s) = � ko (h)

h (s); (88)

which holds sinceVh (s) (and hence� h (s)) has not been updated during episodesko(h); ko(h) + 1 ; � � � ; k � 1 (in view
of the de�nition (77)). Combining the above two results, we can show that

V � k

h (s) � V k
h (s) = Q� k

h

�
s; � k

h (s)
�

� V ko (h)
h (s) = Q� k

h

�
s; � k

h (s)
�

� max
a

Qko (h)
h (s; a)

= Q� k

h

�
s; � ko (h)

h (s)
�

� Qko (h)
h

�
s; � ko (h)

h (s)
�

� 0; (89)

where the �nal line can be veri�ed using exactly the same argument as in the previous case to show(84) and then(86).
Here, we omit the proof of this step for brevity.

To conclude, substituting the relations (86) and (89) in the above two cases back into (81), we arrive at

V � k

h (s) � V k
h (s) � 0

as desired in (79). This immediately completes the induction argument.
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C.2. Proof of LemmaA.2

Observing that LemmaA.2 would follow immediately if we could establish the following relation:

Ah :=
KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)Ph;s;a

N k
h (s;a )X

n =1

� N k
h (s;a )

n

�
V ?

h+1 � V k n (s;a )
h+1

�

| {z }
= :A h;k

�
KX

k=1

�
1 +

1
H

� X

s2S

d� ?

h+1 (s)
�
V ?

h+1 (s) � V k
h+1 (s)

�

| {z }
= :B h;k

+16

r

H 2C?K log
H
�

+ 8HC ? log
H
�

; (90)

the remainder of the proof is thus dedicated to proving (90).

To continue, let us �rst consider two auxiliary sequencesf Yh;k gK
k=1 andf Zh;k gK

k=1 which are the empirical estimation of
Ah;k andBh;k respectively. For any time steph in episodek, Yh;k andZh;k are de�ned as follows

Yh;k :=
d� ?

h (sk
h ; ak

h )
d�

h (sk
h ; ak

h )
Ph;s k

h ;a k
h

N k
h (sk

h ;a k
h )X
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� N k
h (sk

h ;a k
h )

n

�
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h )
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�
;

Zh;k :=
�

1 +
1
H

�
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h (sk
h ; ak

h )
d�

h (sk
h ; ak

h )
Ph;s k

h ;a k
h

�
V ?

h+1 � V k
h+1

�
:

To begin with, let us establish the relationship betweenf Yh;k gK
k=1 andf Zh;k gK

k=1 :

KX

k=1

Yh;k =
KX

k=1

d� ?

h (sk
h ; ak

h )
d�

h (sk
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h )
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h ;a k
h

N k
h (sk

h ;a k
h )X
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� N k
h (sk

h ;a k
h )

n

�
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h+1 � V k n (sk
h ;a k

h )
h+1

�

(i)
=

KX
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d� ?

h (sl
h ; al

h )
d�

h (sl
h ; al

h )
Ph;s l

h ;a l
h

8
<

:

N K
h (sl

h ;a l
h )X

N = N l
h (sl

h ;a l
h )

� N
N l

h (sl
h ;a l

h )

9
=

;

�
V ?

h+1 � V l
h+1

�
(91)

�
�

1 +
1
H

� KX

k=1

d� ?

h (sk
h ; ak

h )
d�

h (sk
h ; ak

h )
Ph;s k

h ;a k
h

�
V ?

h+1 � V k
h+1

�
=

KX

k=1

Zh;k : (92)

Here, (i) holds by replacingkn (sk
h ; ak

h ) with l and gathering all terms that involveV ?
h+1 � V k n (sk

h ;a k
h )

h+1 ; in the last line, we

have invoked the property
P N K

h (s;a )
N = n � N

n �
P 1

N = n � N
n = 1 + 1 =H (see(55b)) together with the factV ?

h+1 � V l
h+1 � 0

(see LemmaA.1), and have further replacedl with k.

With this relation in hand, to verify (90), we further decomposeAh into several terms

Ah =
KX

k=1

Ah;k =
KX

k=1

Yh;k +
KX

k=1

(Ah;k � Yh;k )
(i)
�

KX

k=1

Zh;k +
KX

k=1

(Ah;k � Yh;k )

=
KX

k=1

Bh;k +
KX

k=1

(Zh;k � Bh;k ) +
KX

k=1

(Ah;k � Yh;k ) (93)

where (i) follows from (92).

As a result, it remains to control
P K

k=1 (Zh;k � Bh;k ) and
P K

k=1 (Ah;k � Yh;k ) separately in the following.

Step 1: controlling
P K

k=1 (Ah;k � Yh;k ). We shall �rst control this term by means of LemmaB.6. Speci�cally, consider

W k
h+1 (s; a) :=

N k
h (s;a )X

n =1

� N k
h (s;a )

n

�
V ?

h+1 � V k n (s;a )
h+1

�
; Cd := 1 (94)
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which satis�es


 W k

h+1 (s; a)



1 �
N k

h (s;a )X
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� N k
h (s;a )

n

� 
 V ?
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1

�
� 2H =: Cw : (95)

Here we use the fact that� N k
h

0 +
P N k

h
n =1 � N k

h
n = 1 (see(25) and(26)). Then, applying LemmaB.6 with (94), we have with

probability at least1 � � , the following inequality holds true
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�
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log
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+ 4HC ? log
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H 2C?K log
H
�

+ 4HC ? log
H
�

; (96)

where (i) holds by

 Ph;s;a




1 = 1 .

Step 2: controlling
P K

k=1 (Zh;k � Bh;k ). Similarly, we shall control
P K

k=1 (Zh;k � Bh;k ) by invoking LemmaB.6.
Recalling that

Zh;k � Bh;k =
�

1 +
1
H

�
d� ?

h (sk
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h )
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1 +
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� X

s2S
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h+1 (s) � V k
h+1 (s)

�
; (97)

consider

W k
h+1 (s; a) := V ?

h+1 � V k
h+1 ; Cd :=

�
1 +

1
H

�
� 2 (98)

which satis�es
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1 � 2H =: Cw : (99)

Again, in view of LemmaB.6, we have with probability at least1 � � ,
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H 2C?K log
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; (100)

where (i) holds by

 Ph;s;a




1 = 1 .

Step 3: putting together. Substitution results in (96) and (100) back into (93) completes the proof of LemmaA.2 by

Ah �
KX

k=1

Bh;k +
�
�
�

KX

k=1

(Zh;k � Bh;k )
�
�
� +

�
�
�

KX

k=1

(Ah;k � Yh;k )
�
�
� �

KX

k=1

Bh;k + 24

r

H 2C?K log
H
�

+ 12HC ? log
H
�

:
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C.3. Proof of LemmaA.3

Recall that the term of interest in (42) is given by
HX

h=1

�
1 +

1
H

� h� 1
 

24

r

H 2C?K log
2H
�

+ 12HC ? log
2H
�

!

+
HX

h=1

�
1 +

1
H

� h� 1

I h : (101)

First, it is easily seen that
�

1 +
1
H

� h� 1

�
�

1 +
1
H

� H

� e for everyh = 1 ; � � � ; H; (102)

which taken collectively with the expression of the �rst term in (101) yields
HX
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�
1 +

1
H

� h� 1
 

24
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�
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� 24e
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�
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.

r

H 4C?K log
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+ H 2C? log
H
�

: (103)

As a result, it remains to control the second term in(101). Plugging the expression ofI h (cf. (39)) and invoking the fact
(102) give
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(104)

Step 1: controlling the quantities A and B in (104). We �rst develop an upper bound on the quantityA in (104).
Recognizing the fact that� N

0 = 0 for anyN > 0 (see (25)), we have
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where the last equality holds since� ? is a deterministic policy (so thatd� ?

h (s; a) 6= 0 only whena = � ?(s)). Recalling
d� ?

h (s;a )
d�

h (s;a ) � C? under Assumption2.1, we can further boundA by

A � 8eH2SC?� + eH
HX

h=1

X

s2S

d� ?

h

�
s; � ?(s)

� KX

k= d 8 �
d �

h ( s;� ? ( s ))
e

1
�
N k

h

�
s; � ?(s)

�
< 1

�
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= 8eH2SC?�; (105)

where the last inequality follows since whenk � 8�
d�

h (s;a ) , one has — with probability at least1 � � — that

N k
h (s; a) �

kd�
h (s; a)
8�

� 1;

holds simultaneously for all(s; a; h; k) 2 S � A � [K ] � [H ] (as implied by (57a)).

Turning to the quantityB in (104), one can deduce that

B = 2e
HX

h=1

KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)
N k

h (s;a )X

n =1

� N k
h (s;a )

n bn

.
HX

h=1

KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)

s
H 3�2

N k
h (s; a) _ 1

=
HX

h=1

KX

k=1

X

s2S

d� ?

h

�
s; � ?(s)

�
s

H 3�2

N k
h

�
s; � ?(s)

�
_ 1

; (106)

where the inequality follows from inequality(75), and the last equality is valid since� ? is a deterministic policy. To further

control the right hand side above, LemmaB.2 provides an upper bound for
q

1=
�
N k

h

�
s; � ?(s)

�
_ 1

�
which in turn leads to

B .
p

H 3�3
HX

h=1

KX

k=1

X

s2S

d� ?

h

�
s; � ?(s)

�
s

1
kd�

h

�
s; � ?(s)

�

.
p

H 3C?�3
HX

h=1

KX

k=1

X

s2S

q
d� ?

h

�
s; � ?(s)

�
r

1
k

.
p

H 5C?K� 3 max
h

X

s2S

q
d� ?

h

�
s; � ?(s)

�

.
p

H 5C?K� 3 �

 
p

S �
s X

s2S

d� ?

h

�
s; � ?(s)

�
!

�
p

H 5SC?K� 3; (107)

where the second inequality follows from the factd� ?
h (s;a )

d�
h (s;a ) � C? under Assumption2.1, and the last line invokes the

Cauchy-Schwarz inequality.

Taking the upper bounds on bothA andB collectively establishes

HX

h=1

�
1 +

1
H

� h� 1

I h � A + B . H 2SC?� +
p

H 5SC?K� 3: (108)

Step 2: putting everything together. Combining (103) and (108) allows us to establish that

HX

h=1

�
1 +

1
H

� h� 1
 

I h + 16

r

H 2C?K log
2H
�

+ 8HC ? log
2H
�

!

. H 2SC?� +
p

H 5SC?K� 3;

as advertised.

D. Proof of lemmas forLCB-Q-Advantage (Theorem4.1)

Additional notation for LCB-Q-Advantage. Let us also introduce, and remind the reader of, several notation of interest
in Algorithm 5 as follows.

� N k
h (s; a) (resp.N (m;t )

h (s; a)) denotes the value ofNh (s; a) — the number of episodes that has visited(s; a) at steph
at thebeginningof thek-th episode (resp. thebeginningof t-th episode of them-th epoch); for the sake of conciseness,
we shall often abbreviateN k

h = N k
h (s; a) (resp.N (m;t )

h = N (m;t )
h (s; a)) when it is clear from context.
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� L m = 2 m : the total number of in-epoch episodes in them-th epoch.

� kn
h (s; a): the index of the episode in which(s; a) is visited for then-th time at time steph; (mn

h (s; a); tn
h (s; a)) denote

respectively the index of the epoch and that of the in-epoch episode in which(s; a) is visited for then-th time at
steph; for the sake of conciseness, we shall often use the shorthandkn = kn

h (s; a), (mn ; kn ) = ( mn
h (s; a); kn

h (s; a))
whenever it is clear from context.

� Qk
h (s; a), QLCB;k

h (s; a), Q
k
h (s; a) andV k

h (s) are used to denoteQh (s; a), QLCB
h (s; a), Qh (s; a), andVh (s) at the

beginningof thek-th episode, respectively.

� V
k
h (s); V

next;k
h (s); � k

h (s; a); � next;k
h (s; a) denote the values ofV h (s); V

next
h (s); � h (s; a) and� next

h (s; a) at thebegin-
ningof thek-th episode, respectively.

� bN (m;t )
h (s; a) representsbNh (s; a) at thebeginningof thet-th in-epoch episode in them-th epoch.

� bN epo;m
h (s; a) denotesbN (m;L m +1)

h (s; a), representing the number of visits to(s; a) in the entire duration of them-th
epoch.

� [� ref;k
h ; � ref;k

h ; � adv;k
h ; � adv;k

h ; �
k
h ; B

k
h ; b

k
h ]: the values of[� ref

h ; � ref
h ; � adv

h ; � adv
h ; � h ; B h ; bh ] at thebeginningof thek-th

episode, respectively.

In addition, for a �xed vectorV 2 RjSj , let us de�ne a variance parameter with respect toPh;s;a as follows

Varh;s;a (V ) := E
s0� Ph;s;a

h�
V (s0) � Ph;s;a V

� 2
i

= Ph;s;a (V 2) � (Ph;s;a V)2: (109)

This notation will be useful in the subsequent proof. We remind the reader that there exists a one-to-one mapping between
the index of the episodek and the index pair(m; t ) (i.e., the epochm and in-epoch episodet), as speci�ed in(45). In the
following, for any episodek, we recall the expressions ofV h+1 and� h (which is the running mean ofV h+1 ).

� Recalling the update rule ofV h andV
next
h in line 34and line35of Algorithm 5, we observe that both the reference

values for the current epochV h and for the next epochV
next
h remain unchanged within each epoch. Additionally, for

any epochm, V h takes the value ofV
next
h in the previous(m � 1)-th epoch; namely, for any episodek happening in

them-th epoch, we have

V
k
h = V

next;k 0

h (110)

for all episodek0 within the(m � 1)-th epoch.

� � k
h serves as the estimate ofPh;s;a V

k
h+1 constructed by the samples in the previous(m � 1)-th epoch (collected by

updating� next
h ). Recall the update rule of� h in line 34and line29of Algorithm 5: for any(s; a; h) 2 S � A � [H ],

we can write� k
h as

� k
h (s; a) = � (m; 1)

h (s; a) = � next;(m; 1)
h (s; a) = � next;(m � 1;L m � 1 )

h (s; a)

=

P N ( m; 1)
h

i = N ( m � 1 ; 1)
h +1

V
next;k i

h+1 (sk i

h+1 )

bN epo;m � 1
h (s; a) _ 1

=

P N ( m; 1)
h

i = N ( m � 1 ; 1)
h +1

V
k
h+1 (sk i

h+1 )

bN epo;m � 1
h (s; a) _ 1

; (111)

where the last equality follows from(110) using the fact that the indices of episodes in which(s; a) is visited within
the(m � 1)-th epoch aref i : i = N (m � 1;1)

h + 1 ; N (m � 1;1)
h + 2 ; � � � ; N (m; 1)

h g.

Finally, according to the update rules of� adv;k n +1

h (sk
h ; ak

h ) and� adv;k n +1

h (sk
h ; ak

h ) in lines11-12of Algorithm 3, we have

� adv;k n +1

h (sk
h ; ak

h ) = � adv;k n +1
h (sk

h ; ak
h ) = (1 � � n )� adv;k n

h (sk
h ; ak

h ) + � n
�
V k n

h+1 (sk n

h+1 ) � V
k n

h+1 (sk n

h+1 )
�
;
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� adv;k n +1

h (sk
h ; ak

h ) = � adv;k n +1
h (sk

h ; ak
h ) = (1 � � n )� adv;k n

h (sk
h ; ak

h ) + � n
�
V k n

h+1 (sk n

h+1 ) � V
k n

h+1 (sk n

h+1 )
� 2

:

Applying this relation recursively and invoking the de�nitions of� N k
h

n in (25) give

� adv;k N k
h +1

h (s; a) =
N k

hX

n =1

� N k
h

n P k n

h

�
V k n

h+1 � V
k n

h+1

�
; � adv;k N k

h +1
h (s; a) =

N k
hX

n =1

� N k
h

n P k n

h

�
V k n

h+1 � V
k n

h+1

� 2
: (112)

Similarly, according to the update rules of� ref;k n +1

h (s; a) and� ref;k n +1

h (s; a) in lines9-10of Algorithm 3, we obtain

� ref;k n +1

h (s; a) = � ref;k n +1
h (s; a) =

�
1 �

1
n

�
� ref;k n

h (s; a) +
1
n

V
next;k n

h+1 (sk n

h+1 );

� ref;k n +1

h (s; a) = � ref;k n +1
h (s; a) =

�
1 �

1
n

�
� ref;k n

h (s; a) +
1
n

�
V

next;k n

h+1 (sk n

h+1 )
� 2

:

Simple recursion leads to

� ref;k N k
h +1

h (s; a) =
1

N k
h

N k
hX

n =1

P k n

h V
next;k n

h+1 ; � ref;k N k
h +1

h (s; a) =
1

N k
h

N k
hX

n =1

P k n

h

�
V

next;k n

h+1

� 2
: (113)

D.1. Proof of LemmaA.4

Akin to the proof of LemmaA.1, the second inequality of (47) holds trivially since

V �
h (s) � V ?

h (s)

holds for any policy� . Thus, it suf�ces to focus on justifying the �rst inequality of (47), namely,

V k
h (s) � V � k

h (s) 8(k; h; s) 2 [K ] � [H ] � S ; (114)

which we shall prove by induction.

Step 1: introducing the induction hypothesis. For notational simplicity, let us de�ne

ko(h; k; s) := max
n

l : l < k andV l
h (s) = max

a
max

n
QLCB;l

h (s; a); Q
l
h (s; a)

oo
(115)

for any (h; k; s) 2 [H ] � [K ] � S . Here,ko(h; k; s) denotes the index of the latest episode — right at the end of the
(k � 1)-th episode — in whichVh (s) has been updated, which shall be abbreviated asko(h) whenever it is clear from
context.

In what follows, we shall �rst justify the advertised inequality for the base case whereh = H + 1 for all episodesk 2 [K ],
followed by an induction argument. Regarding the induction part, let us consider anyk 2 [K ] and anyh 2 [H ], and suppose
that

V k 0

h0 (s) � V � k 0

h0 (s) for all (k0; h0; s) 2 [k � 1] � [H + 1] � S ; (116a)

V k
h0(s) � V � k

h0 (s) for all h0 � h + 1 ands 2 S: (116b)

We intend to justify

V k
h (s) � V � k

h (s) 8s 2 S; (117)

assuming that the induction hypotheses (116) hold.
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Step 2: controlling the con�dent bound
P N k

h
n =1 � N k

h
n b

k n +1
h . Before proceeding, we �rst introduce an auxiliary result on

bounding
P N k

h
n =1 � N k

h
n b

k n +1
h , which plays a crucial role. For any(s; a), it is easily seen that

N k
h (s; a) = 0 = )

N k
h (s;a )X

n =1

� N k
h (s;a )

n b
k n (s;a )+1
h = 0 : (118)

WhenN k
h (s; a) > 0, expanding the de�nitions ofb

k n +1
h (cf. line 6 of Algorithm 3) and�

k+1
h (cf. line 15of Algorithm 3)

leads to

N k
hX

n =1

� N k
h

n b
k n +1
h

=
N k

hX

n =1

� n

N k
hY

i = n +1

(1 � � i ) �
� �

1 �
1
� n

�
B

k n

h (s; a) +
1
� n

B
k n +1
h (s; a)

�
+ cb

N k
hX

n =1

� N k
h

n

n3=4
H 7=4� + cb

N k
hX

n =1

� N k
h

n

n
H 2�

=
N k

hX

n =1

0

@
N k

hY

i = n +1

(1 � � i )B
k n +1
h (s; a) �

N k
hY

i = n

(1 � � i )B
k n

h (s; a)

1

A + cb

N k
hX

n =1

� N k
h

n

n3=4
H 7=4� + cb

N k
hX

n =1

� N k
h

n

n
H 2�

(i)
=

N k
hX

n =1

N k
hY

i = n +1

(1 � � i )B
k n +1
h (s; a) �

N k
hX

n =2

N k
hY

i = n

(1 � � i )B
k n

h (s; a) + cb

N k
hX

n =1

� N k
h

n

n3=4
H 7=4� + cb

N k
hX

n =1

� N k
h

n

n
H 2�

(ii)
=

N k
hX

n =1

N k
hY

i = n +1

(1 � � i )B
k n +1
h (s; a) �

N k
h � 1X

n =1

N k
hY

i = n +1

(1 � � i )B
k n +1
h (s; a) + cb

N k
hX

n =1

� N k
h

n

n3=4
H 7=4� + cb

N k
hX

n =1

� N k
h

n

n
H 2�

= B
k N k

h +1
h (s; a) + cb

N k
hX

n =1

� N k
h

n

n3=4
H 7=4� + cb

N k
hX

n =1

� N k
h

n

n
H 2�; (119)

where we abuse the notation to let
Q j

i = j +1 (1 � � i ) = 1 . Here, (i) holds sinceB
k 1

(s; a) = 0 , (ii) follows from the

fact thatB
k n +1

(s; a) = B
k n +1

(s; a), since(s; a) has not been visited at steph during the episodes between the indices

kn + 1 andkn +1 � 1. Combining the above result in(119) with the properties 1
(N k

h )3= 4 �
P N k

h
n =1

�
N k

h
n

n 3= 4 � 2
(N k

h )3= 4 and

1
N k

h
�

P N k
h

n =1
�

N k
h

n
n � 2

N k
h

(see LemmaB.1), we arrive at

B
k N k

h +1
h (s; a) + cb

H 7=4�
(N k

h )3=4
+ cb

H 2�
N k

h

�
N k

hX

n =1

� N k
h

n b
k n +1
h � B

k N k
h +1

h (s; a) + 2 cb
H 7=4�

(N k
h )3=4

+ 2cb
H 2�
N k

h

(120)

as long asN k
h (s; a) > 0.

Step 3: base case. Let us look at the base case withh = H +1 for anyk 2 [K ]. Recalling the facts thatV �
H +1 = V k

H +1 = 0
for any� and anyk 2 [K ], we reach

V k
H +1 (s) � V � k

H +1 (s) for all (k; s) 2 [K ] � S : (121)

Step 4: induction arguments. We now turn to the induction arguments. Suppose that(116) holds for a pair(k; h) 2
[K ] � [H ]. Everything comes down to justifying (117) for time steph in the episodek.

First, we recall the update rule ofVh (s) in lines25-26of Algorithm 5:

V k
h (s) = max

a
Qk

h (s; a) = Qk
h

�
s; � k

h (s)
�

= max
n

QLCB;k
h

�
s; � k

h (s)
�

; Q
k
h

�
s; � k

H (s)
�

; Qk � 1
h

�
s; � k

h (s)
� o

:

Then we shall verify (117) in three different cases.
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� WhenV k
h (s) = QLCB;k

h

�
s; � k

h (s)
�
, the term of interest can be controlled by

V � k

h (s) � V k
h (s)

(i)
= Q� k

h

�
s; � k

h (s)
�

� QLCB;k
h

�
s; � k

h (s)
�

� 0;

where (i) holds since� k is set to be the greedy policy such thatV � k

h (s) = Q� k

h (s; � k
h (s)) ; and the last inequality

follows directly from the analysis forLCB-Q (see (85)).

� WhenV k
h (s) = Q

k
h

�
s; � k

h (s)
�
, we obtain

V � k

h (s) � V k
h (s) = Q� k

h

�
s; � k

h (s)
�

� Q
k
h

�
s; � k

h (s)
�

: (122)

To prove the term on the right-hand side of(122) is non-negative, we proceed by developing a more general lower
bound onQ� k

h (s; a) � Q
k
h (s; a) for every(s; a) 2 S � A . Towards this, recalling the de�nition ofN k

h andkn , we can
express

Q
k
h (s; a) = Q

k N k
h +1

h (s; a):

Thus, according to the update rule (cf. line7 in Algorithm 3), we arrive at

Q
k
h (s; a) = Q

k N k
h +1

h (s; a)

= (1 � � N k
h

)Q
k N k

h

h (s; a) + � N k
h

�
r h (s; a) + V k N k

h

h+1 (sk N k
h

h+1 ) � V
k N k

h

h+1 (sk N k
h

h+1 ) + � k N k
h

h (s; a) � b
k N k

h +1
h

�
:

Applying this relation recursively and invoking the de�nitions of� N k
h

0 and� N k
h

n in (25) give

Q
k
h (s; a) = � N k

h
0 Q

1
h (s; a) +

N k
hX

n =1

� N k
h

n

�
r h (s; a) + V k n

h+1 (sk n

h+1 ) � V
k n

h+1 (sk n

h+1 ) + � k n

h (s; a) � b
k n +1
h

�
: (123)

Additionally, for any policy� k , the basic relation� N k
h

0 +
P N k

h
n =1 � N k

h
n = 1 (see (26) and (25)) gives

Q� k

h (s; a) = � N k
h

0 Q� k

h (s; a) +
N k

hX

n =1

� N k
h

n Q� k

h (s; a): (124)

Combing (123) and (124) leads to

Q� k

h (s; a) � Q
k
h (s; a) = � N k

h
0

�
Q� k

h (s; a) � Q
1
h (s; a)

�

+
N k

hX

n =1

� N k
h

n

�
Q� k

h (s; a) � r h (s; a) � V k n

h+1 (sk n

h+1 ) + V
k n

h+1 (sk n

h+1 ) � � k n

h (s; a) + b
k n +1
h

�
: (125)

Plugging in the construction of� h in (111) and invoking the Bellman equation

Q� k

h (s; a) = r h (s; a) + Ph;s;a V � k

h+1 ; (126)

we arrive at

Q� k

h (s; a) � r h (s; a) � V k n

h+1 (sk n

h+1 ) + V
k n

h+1 (sk n

h+1 ) � � k n

h (s; a) + b
k n +1
h

= Ph;s;a V � k

h+1 + V
k n

h+1 (sk n

h+1 ) � V k n

h+1 (sk n

h+1 ) �

P N ( m n ; 1)
h

i = N ( m n � 1 ; 1)
h +1

V
k n

h+1 (sk i

h+1 )

bN epo;m n � 1
h (s; a) _ 1

+ b
k n +1
h
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= Ph;s;a V � k

h+1 � V k n

h+1 (sk n

h+1 ) +
�

P k n

h � Ph;s;a

�
V

k n

h+1 +

0

B
@Ph;s;a �

P N ( m n ; 1)
h

i = N ( m n � 1 ; 1)
h +1

P k i

h

bN epo;m n � 1
h (s; a) _ 1

1

C
A V

k n

h+1 + b
k n +1
h

= Ph;s;a

�
V � k

h+1 � V k n

h+1

�
+ b

k n +1
h + � k n

h ;

where

� k n

h :=
�
P k n

h � Ph;s;a
��

V
k n

h+1 � V k n

h+1

�
+

0

B
@Ph;s;a �

P N ( m n ; 1)
h

i = N ( m n � 1 ; 1)
h +1

P k i

h

bN epo;m n � 1
h (s; a) _ 1

1

C
A V

k n

h+1 : (127)

Inserting the above result into (125) leads to the following decomposition

Q� k

h (s; a) � Q
k
h (s; a) = � N k

h
0

�
Q� k

h (s; a) � Q
1
h (s; a)

�
+

N k
hX

n =1

� N k
h

n

�
Ph;s;a

�
V � k

h+1 � V k n

h+1

�
+ b

k n +1
h + � k n

h

�
(128)

�
N k

hX

n =1

� N k
h

n (b
k n +1
h + � k n

h ); (129)

which holds by virtue of the following facts:

(i) The initializationQ
1
h (s; a) = 0 and the non-negativity ofQ�

h (s; a) for any policy� and(s; a) 2 S � A lead to

Q� k

h (s; a) � Q
1
h (s; a) = Q� k

h (s; a) � 0.

(ii) For any episodekn appearing beforek, making use of the induction hypothesisV � k

h+1 (s) � V k
h+1 (s) in (116b)

and the monotonicity ofVh (s) in (46), we obtain

V � k

h+1 (s) � V k n

h+1 (s) � V k
h+1 (s) � V k n

h+1 (s) � 0: (130)

The following lemma ensures that the right-hand side of(129) is non-negative. We postpone the proof of LemmaD.1
to AppendixD.4 to streamline our discussion.

Lemma D.1. For any� 2 (0; 1), there exists some suf�ciently large constantcb > 0, such that with probability at
least1 � � ,

�
�
�
�

N k
hX

n =1

� N k
h

n � k n

h

�
�
�
� �

N k
hX

n =1

� N k
h

n b
k n +1
h ; 8k 2 [K ]: (131)

Taking this lemma together with the inequalities (122) and (129) yields

V � k

h (s) � V k
h (s) = Q� k

h (s; a) � Q
k
h (s; a) �

N k
hX

n =1

� N k
h

n b
k n +1
h �

�
�
�
�

N k
hX

n =1

� N k
h

n � k n

h

�
�
�
� � 0:

� Next, consider the case whereV k
h (s) = Qk � 1

h

�
s; � k

h (s)
�
. In view of the de�nition ofko(h) in (115), one has

V k
h (s) = Qk � 1

h

�
s; � k

h (s)
�

= Qko (h)
h

�
s; � k

h (s)
�

= max
n

QLCB;k o (h)
h

�
s; � k

h (s)
�

; Q
ko (h)
h

�
s; � k

h (s)
� o

;

sinceQh
�
s; � k

h (s)
�

has not been updated during the episodeko(h) and remains unchanged in the episodesko(h) +
1; ko(h) + 2 ; � � � ; k � 1. With this equality in hand, the term of interest in (117) can be controlled by

V � k

h (s) � V k
h (s) = Q� k

h (s; � k
h (s)) � max

n
QLCB;k o (h)

h

�
s; � k

h (s)
�

; Q
ko (h)
h

�
s; � k

h (s)
� o

� 0;

where the last inequality follows from the facts

Q� k

h (s; � k
h (s)) � QLCB;k o (h)

h (s; � k
h (s))

(i)
� 0;
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Q� k

h (s; � k
h (s)) � Q

ko (h)
h (s; � k

h (s))
(ii)
� 0:

Here, (i) follows from the same analysis framework for showing (84) and (86); (ii) holds due to the following fact

Q� k

h (s; a) � Q
ko (h)
h (s; a) �

N k o ( h )
hX

n =1

�
N k o ( h )

h
n (b

k n +1
h + � k n

h ) � 0;

which is obtained directly by adapting(129) and then invoking(131) for k = ko(h); since the analysis follows verbatim,
we omit their proofs here.

Combining the above three cases veri�es the induction hypothesis in (117), provided that (116) is satis�ed.

Step 5: putting everything together. Combining the base case in Step 3 and induction arguments in Step 4, we can
readily verify the induction hypothesis in Step 1, which in turn establishes LemmaA.4.

D.2. Proof of LemmaA.5

For everyh 2 [H ], we can decompose

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

� (i)
�

KX

k=1

X

s2S

d� ?

h

�
s; � ?

h (s)
� �

Q?
h

�
s; � ?

h (s)
�

� Q
k
h

�
s; � ?

h (s)
� �

=
KX

k=1

X

s;a 2S�A

d� ?

h (s; a)
�

Q?
h (s; a) � Q

k
h (s; a)

�
; (132)

where (i) follows from the factV k
h (s) = max a Qk

h (s; a) � maxa Q
k
h (s; a) � Q

k
h (s; � ?

h (s)) (see lines25-26in Algorithm 5).
Here, the last equality is due to (35).

Step 1: boundingQ?
h (s; a) � Q

k
h (s; a). The basic relation� N k

h
0 +

P N k
h

n =1 � N k
h

n = 1 (see (26) and (25)) gives

Q?
h (s; a) = � N k

h
0 Q?

h (s; a) +
N k

hX

n =1

� N k
h

n Q?
h (s; a); (133)

which combined with (123) leads to

Q?
h (s; a) � Q

k
h (s; a) = � N k

h
0

�
Q?

h (s; a) � Q
1
h (s; a)

�

+
N k

hX

n =1

� N k
h

n

�
Q?

h (s; a) � r h (s; a) � V k n

h+1 (sk n

h+1 ) + V
k n

h+1 (sk n

h+1 ) � � k n

h (s; a) + b
k n +1
h

�
: (134)

Invoking the Bellman optimality equation

Q?
h (s; a) = r h (s; a) + Ph;s;a V ?

h+1 ; (135)

we can decomposeQ?
h (s; a) � Q

k
h (s; a) similar to (128) by inserting (127) as follows:

Q?
h (s; a) � Q

k
h (s; a) = � N k

h
0

�
Q?

h (s; a) � Q
1
h (s; a)

�
+

N k
hX

n =1

� N k
h

n

�
Ph;s;a

�
V ?

h+1 � V k n

h+1

�
+ b

k n +1
h + � k n

h

�

(i)
� � N k

h
0 H +

N k
hX

n =1

� N k
h

n

�
b

k n +1
h + � k n

h

�
+

N k
hX

n =1

� N k
h

n Ph;s;a

�
V ?

h+1 � V k n

h+1

�
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(ii)
� � N k

h
0 H +

N k
hX

n =1

� N k
h

n Ph;s;a

�
V ?

h+1 � V k n

h+1

�
+ 2

N k
hX

n =1

� N k
h

n b
k n +1
h

(iii)
� � N k

h
0 H +

N k
hX

n =1

� N k
h

n Ph;s;a

�
V ?

h+1 � V k n

h+1

�
+ 2

 

B
k
h (s; a) + 2 cb

H 7=4�
�
N k

h _ 1
� 3=4

+ 2cb
H 2�

N k
h _ 1

!

; (136)

where (i) follows from the initializationQ
1
h (s; a) = 0 and the trivial upper boundQ�

h (s; a) � H for any policy� , (ii) holds
owing to the fact (see (131))

N k
hX

n =1

� N k
h

n

�
b

k n +1
h + � k n

h

�
�

N k
hX

n =1

� N k
h

n b
k n +1
h +

�
�
�
�

N k
hX

n =1

� N k
h

n � k n

h

�
�
�
� � 2

N k
hX

n =1

� N k
h

n b
k n +1
h ; (137)

and (iii) comes from (120) with the factB
k N k

h +1
h (s; a) = B

k
h (s; a).

Step 2: decomposing the error in(132). Plugging (136) into (132) and rearranging terms yield

KX

k=1

X

s2S

d� ?

h (s)
�
V ?

h (s) � V k
h (s)

�
(138)

�
KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)

"

� N k
h (s;a )

0 H + 2B
k
h (s; a) +

4cbH 7=4�
�
N k

h (s; a) _ 1
� 3=4

+
4cbH 2�

N k
h (s; a) _ 1

#

+
KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)Ph;s;a

N k
h (s;a )X

n =1

� N k
h (s;a )

n

�
V ?

h+1 � V k n (s;a )
h+1

�

�
KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)

"

� N k
h (s;a )

0 H +
4cbH 7=4�

�
N k

h (s; a) _ 1
� 3=4

+
4cbH 2�

N k
h (s; a) _ 1

#

| {z }
=: J 1

h

+ 2
KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)B
k
h (s; a)

| {z }
=: J 2

h

+
KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)Ph;s;a

N k
h (s;a )X

n =1

� N k
h (s;a )

n

�
V ?

h+1 � V k n (s;a )
h+1

�
: (139)

Step 3: controlling the last term in (139). If we could verify the following result

KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)Ph;s;a

N k
h (s;a )X

n =1

� N k
h (s;a )

n

�
V ?

h+1 � V k n (s;a )
h+1

�

�
�

1 +
1
H

� X

s2S

d� ?

h+1 (s)
�
V ?

h+1 (s) � V k
h+1 (s)

�
+ 48

r

HC ?K log
2H
�

+ 28caH 3C?
p

S�2

| {z }
= :J 3

h

; (140)

then combining this result with inequality(139) would immediately establish LemmaA.5. As a result, it suf�ces to verify
the inequality (140), which shall be accomplished as follows.

Proof of inequality (140). We �rst make the observation that the left-hand side of inequality(140) is the same as what
LemmaA.2 shows. Therefore, we shall establish this inequality following the same framework as in AppendixC.2. To
begin with, let us recall several de�nitions in AppendixC.2:

Ah :=
KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)Ph;s;a

N k
h (s;a )X

n =1

� N k
h (s;a )

n

�
V ?

h+1 � V k n (s;a )
h+1

�

| {z }
= :A h;k

;
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Bh;k :=
�

1 +
1
H

� X

s2S

d� ?

h+1 (s)
�
V ?

h+1 (s) � V k
h+1 (s)

�
;

Yh;k =
d� ?

h (sk
h ; ak

h )
d�

h (sk
h ; ak

h )
Ph;s k

h ;a k
h

N k
h (sk

h ;a k
h )X

n =1

� N k
h (sk

h ;a k
h )

n

�
V ?

h+1 � V k n (sk
h ;a k

h )
h+1

�
;

Zh;k =
�

1 +
1
H

�
d� ?

h (sk
h ; ak

h )
d�

h (sk
h ; ak

h )
Ph;s k

h ;a k
h

�
V ?

h+1 � V k
h+1

�
; (141)

and we also remind the reader of the relation in (93) as follows

Ah �
KX

k=1

Bh;k +
KX

k=1

(Zh;k � Bh;k ) +
KX

k=1

(Ah;k � Yh;k ) : (142)

Equipped with these relations, we aim to control
P K

k=1 (Zh;k � Bh;k ) and
P K

k=1 (Ah;k � Yh;k ) respectively as follows.

� We �rst bound
P K

k=1 (Ah;k � Yh;k ), which is similar to (96) (as controlled by LemmaB.6). Repeating the argument
and tightening the bound from the second line of(96), we have for all(h; s; a) 2 [H ] � S � A , with probability at
least1 � � ,

�
�
�
�
�

KX

k=1

(Ah;k � Yh;k )

�
�
�
�
�

�
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u
t

KX

k=1

8C2
d C?
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(s;a )2S�A

d� ?
h (s; a)
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Ph;s;a W k

h+1 (s; a)
� 2

log
2H
�

+ 2CdC?Cw log
2H
�

�

vu
u
u
t 8C? log

2H
�

KX

k=1

X

(s;a )2S�A

d� ?
h (s; a)

2

4
N k

h (s;a )X

n =1

�
N k

h (s;a )
n Ph;s;a

�
V ?

h+1 � V k n (s;a )
h+1

�
3

5

2

+ 4HC ? log
2H
�

(i)
�

r

8C? log
2H
�

(36HK + 3c2
aH 6SC?� ) + 4 HC ? log

2H
�

� 32

r

HC ?K log
2H
�

+ 12caH 3C?
p

S�2: (143)

Here, (i) holds by virtue of the following fact

KX

k=1

X

(s;a )2S�A

d� ?
h (s; a)

2

4
N k

h (s;a )X

n =1

� N k
h (s;a )

n Ph;s;a

�
V ?

h+1 � V k n (s;a )
h+1

�
3

5

2

� 36HK + 3c2
aH 6SC?�; (144)

whose proof is postponed to AppendixD.2.1.

� Next, we turn to
P K

k=1 (Zh;k � Bh;k ), which can be bounded similar to(100) (as controlled via LemmaB.6). Repeating
the argument and tightening the bound from the second line of (100) yield

�
�
�
�
�

KX

k=1

(Bh;k � Zh;k )

�
�
�
�
�

�
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u
t

KX
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d� ?
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�
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� 2

log
2H
�

+ 2CdC?Cw log
2H
�

� 8
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u
t C? log

2H
�

KX

k=1

X

(s;a )2S�A

d� ?
h (s; a)

�
Ph;s;a

�
V ?

h+1 � V k
h+1

�� 2
+ 8HC ? log

2H
�

: (145)

To further control (145), we have

KX

k=1

X

(s;a )2S�A

d� ?
h (s; a)

�
Ph;s;a

�
V ?

h+1 � V k
h+1

�� 2 (i)
�

KX

k=1

X

(s;a )2S�A

d� ?
h (s; a)Ph;s;a

�
V ?
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� 2
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(ii)
� H

KX

k=1

X

(s;a )2S�A

d� ?
h (s; a)Ph;s;a

�
V ?

h+1 � V k
h+1

�

(iii)
� 2HK + c2

aH 6SC?�: (146)

Here, (i) holds due to the non-negativity of the variance

Varh;s;a (V ?
h+1 � V

k
h+1 ) = Ph;s;a (V ?

h+1 � V k
h+1 )2 �

�
Ph;s;a (V ?

h+1 � V k
h+1 )

� 2
� 0; (147)

(ii) follows from the basic property

 V ?

h+1 � V k
h+1




1
� H ; to see why (iii) holds, we refer the reader to(154), which

will be proven in AppendixD.2.1as well. Inserting (146) back into (145) yields
�
�
�
�
�

KX

k=1

(Bh;k � Zh;k )

�
�
�
�
�

� 8

r

C? log
2H
�

(2KH + c2
aH 6SC?� ) + 8 HC ? log

2H
�

� 16

r

HC ?K log
2H
�

+ 16caH 3C?
p

S�: (148)

Substituting the inequalities (143) and (148) into (142), and using the de�nitions in (141), we arrive at

Ah =
KX

k=1

X

(s;a )2S�A

d� ?

h (s; a)Ph;s;a

N k
h (s;a )X
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� N k
h (s;a )
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�
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�
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S�
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h+1 (s) � V k
h+1 (s)

�
+ 48

r

HC ?K log
2H
�

+ 28caH 3C?
p

S�2; (149)

which directly veri�es (140) and completes the proof.

D.2.1. PROOF OF INEQUALITY (144)

Step 1: rewriting the term of interest. We �rst invoke Jensen's inequality to obtain

� N k
hX

n =1

� N k
h

n Ph;s;a

�
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� 2
;

where the �rst inequality follows from
P N k

h
n =1 � N k

h
n = 1 (see(26) and(25)), and the last inequality holds by the non-negativity

of the varianceVarh;s;a [V ?
h+1 � V k n

h+1 ]. This allows one to derive
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; (150)

where (i) can be veri�ed in a way similar to the proof of LemmaA.2 in AppendixC.2. We omit the details for conciseness.
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Step 2: controlling the �rst term in (150). Let us introduce the following short-hand notation

kstop := c2
aH 5SC?�;

and decompose the term in (150) as follows

X

s2S

d� ?

h+1 (s)
KX
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�
V ?
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h+1 (s)

� 2 (i)
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�
: (151)

Here, (i) holds since0 � V ?
h+1 (s) � V k

h+1 (s) � H . The �rst term in (151) satis�es

H
k stopX
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q
H 5SC?�k stop + caH 2SC?�

�
� c2

aH 6SC?�; (152)

where the �rst inequality holds by applying the results ofLCB-Q in (44) with K = kstop. The second term in(151) can be
controlled as follows:
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� 2HK; (153)

where the �rst and the second inequalities hold by the monotonicity propertyV k+1
h+1 � V k

h+1 introduced in(46), and the �nal
inequality follows from applying (44).

Inserting the results in (152) and (153) into (151) yields
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Step 3: combining the above results. Inserting the above result (154) back into (150), we reach:
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where (i) holds due to (154) and1 + 1
H � 2, and (ii) results from the Cauchy-Schwarz inequality.

D.3. Proof of LemmaA.6

We shall verify the three inequalities in (54) separately.
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D.3.1. PROOF OF INEQUALITY (54a)

We start by rewriting the term of interest using the expression ofJ 1
h in (51) as
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Invoking (105) and (102) yields
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In terms ofJ 2
1 , one has
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where (i) holds due to(102) and 1
N k

h (s;a )_ 1 � 8�
kd �

h (s;a ) from LemmaB.2, and (ii) follows from the de�nition ofC? in
Assumption2.1. A direct application of Ḧolder's inequality leads to
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where (iii) follows since� ? is assumed to be a deterministic policy.

Similarly, we can derive an upper bound onJ 3
1 as follows:
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where (i) follows from the result in(102) and the fact 1
N k

h (s;a )_ 1 � 8�
kd �

h (s;a ) (cf. LemmaB.2), and the last relation results
from the de�nition ofC? (cf. Assumption2.1) and the assumption that� ? is a deterministic policy.

Putting the preceding results (157), (158) and (159) together, we conclude that
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D.3.2. PROOF OF INEQUALITY (54b)

Making use of the de�nition ofB
k
h (s; a) (cf. (14)) in the expression ofJ 2

h (cf. (51)), we obtain
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where the last inequality follows from (102). In the following, we shall look at the two terms in (161) separately.
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where the �rst inequality is due to the fact 1
N k

h (s;a )_ 1 � 8�
kd �

h (s;a ) from LemmaB.2, (i) follows from the de�nition ofC? in
Assumption2.1and(35), and (ii) follows from the Cauchy-Schwarz inequality. To continue, we claim the following bound
holds, which will be proven in AppendixD.3.4:
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Combining the above inequality with (162), we arrive at
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Step 2: controlling J 2
2 . Recalling the expressions of� ref;k +1
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We further decompose and boundFh;k as follows:
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where (i) follows from the fact that for somek0 2 [K ], V
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Inserting (166) back into (165), we arrive at
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where (i) follows from the following facts
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We postpone the proofs of (168) and (169) to AppendixD.3.5and AppendixD.3.6, respectively.

Putting the bounds together. Substitute (164) and (167) back into (161) to yield
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D.3.3. PROOF OF INEQUALITY (54c)

Invoking inequality (102) directly leads to
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as claimed.

D.3.4. PROOF OF INEQUALITY (163)

We shall control the term in (163) in a way similar to the proof of LemmaA.2 in AppendixC.2.

Step 1: decomposing the terms of interest. Akin to AppendixC.2, let us introduce the terms of interest and de�nitions
as follows:
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With these de�nitions in place, we directly adapt the argument in (93) to arrive at
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which satis�es
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To further control the �rst term in (173), it follows from Jensen's inequality that
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which yields
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This can be veri�ed similar to the proof for LemmaA.2 in AppendixC.2. We omit the details for conciseness. To continue,
it follows that
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Here, (i) holds by using the pessimistic propertyV ? � V k � V
k

for all k 2 [K ] (see(47)) and by regrouping the summands;
(ii) follows from the fact (see updating rules in line34and line35) that for any(m; s; h) 2 [M ] � S � [H + 1] ,
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h (s); t = 1 ; 2; � � � ; L m ; (176)

and (iii) results from the choice of the parameterL m = 2 m . In addition, we can further control
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Here, (iv) follows from the fact0 � V ?
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h+1 for all t 2 [L m ] (using the monotonic increasing property ofVh+1 introduced in(46)); and (vi) follows from(154).

Putting (178) and (175) together with (173), we arrive at
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Step 3: controlling
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k=1 (Zh;k � Bh;k ). Similarly, we also invoke LemmaB.6 to control
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which satis�es
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Applying LemmaB.6 with (180) yields that: with probability at least1 � � ,
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where (i) follows from (177) and (178).

Step 4: combining the results. Inserting (181) and (179) back into (171), we can conclude that
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where (i) follows from the same routine to obtain (177) and the Cauchy-Schwarz inequality.

D.3.5. PROOF OF INEQUALITY (168)

Step 1: decomposing the error in(168). The term in (168) obeys
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Here, (i) follows from the fact 1
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h (s;a )_ 1 � 8�
kd �

h (s;a ) (cf. LemmaB.2); (ii) follows from the de�nition of C? in Assump-
tion 2.1; (iii) invokes the Cauchy-Schwarz inequality; (iv) can be obtained by regrouping the terms (the terms involving
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With this upper bound in hand, we further decompose
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Here (i) holds due to the following observation: denoting bym the index of the epoch in which episodek occurs, we have
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which invokes the monotonicity ofV k
h+1 in (46). In addition, (ii) arises from the Cauchy-Schwarz inequality.

Step 2: controlling the �rst term in (184). The �rst term in (184) satis�es
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Step 3: controlling the second term in(184). We shall invoke LemmaB.6 for this purpose. To proceed, let
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Here (i) follows from the same routine to arrive at(177), and (ii) comes from(154). As a result, the second term in(184)
satis�es, with probability at least1 � � ,
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Step 4: combining the results. Finally, inserting (186) and (189) into (184), we arrive at
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where the last two inequalities follow from the Cauchy-Schwarz inequality.

D.3.6. PROOF OF INEQUALITY (169)
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To continue, we make the following observation
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due to the elementary inequality
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leaving us with two terms to cope with.

Step 1: controlling the �rst term of (193). By de�nition, we have
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where the last inequality holds due to
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We now control the two terms in (194) separately by invoking LemmaB.4. For the �rst term in (194), let us set
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�
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� 2
; and ui
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:= Cu ; (195)

which indicates that
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Applying LemmaB.4 with (195) andN = N k
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h (s; a), with probability at least1 � �
2 , we arrive at
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Similarly, for the second term in (194), with W i
h+1 := V ?

h+1 , we have with probability at least1 � �
2 ,
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Inserting (197) and (198) back into (194) yields
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Consequently, the �rst term in (193) can be controlled as
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where the last inequality holds due to (158).

Step 2: controlling the second term of(193). The second term can be decomposed as
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where (i) follows from the facts 1
N k

h (s;a )_ 1 � 8�
kd �

h (s;a ) by LemmaB.2 and the de�nition ofC? in Assumption2.1, (ii) holds
by the Cauchy-Schwarz inequality, and the �nal inequality comes from the fact that� ? is deterministic.

We are then left with bounding
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(iii)
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where (i) follows from Bellman's optimality equation, (ii) follows from the Markov property, (iii) holds due to the fact that
V ?

H +1 (s) = 0 for all s 2 S, and (iv) arises from the factr h (s; a) � 1 for all (s; a; h) 2 S � A � [H ]. Substituting(202)
back into (201), we get
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Step 4: combing the results. Combining (200) and (203) with (193) yields
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D.4. Proof of LemmaD.1

In view of (127), we can decompose the term of interest into
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Next, we turn to controlling these two terms separately with the assistance of LemmaB.4.

Step 1: controlling U1. In the following, we invoke LemmaB.4 to controlU1 in (205a). Let us set
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Here, the last inequality follows since (according to LemmaB.1 and the de�nition in (25))
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To continue, it can be seen from (26) that
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holds for all(N; s; a) 2 [K ] � S � A . Therefore, choosingN = N k
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h for any(s; a) and applying LemmaB.4
with the above quantities, we arrive at
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with probability at least1 � � . Here, the proof of the inequality(209) is postponed to AppendixD.4.1in order to streamline
the presentation of the analysis.

Step 2: boundingU2. Making use of the result in (111), we arrive at
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where (i) follows from the fact thatN (m n ;1)
h � N (m n � 1;1)

h = bN epo;m n � 1
h (s; a), and (ii) is obtained by rearranging terms

with respect toi (the terms with respect toV
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h+1 will only be added during the epochmi + 1 ), and the last equality holds

sincemn � 1 = mi for all n = N (m i +1 ;1)
h + 1 ; N (m i +1 ;1)

h + 2 ; N (m i +2 ;1)
h .

With the above relation in mind, we are ready to invoke LemmaB.4 to controlU2. To continue, for any episodej � k, let us
denote bym(j ) the index of the epoch in which episodej happens (with slight abuse of notation). Let us set
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holds for all(j; h; s; a ) 2 [K ] � [H ] � S � A with probability at least1 � � .
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To streamline the presentation of the analysis, we shall postpone the proof of (211) to AppendixD.4.3.

Step 3: summing up. Combining the bounds in (209) and (211) yields that: for any state-action pair(s; a) 2 S � A ,
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holds for some suf�ciently large constantcb > 0, where the last line follows from the de�nition ofB
k N k

h +1
h (s; a) in line 14

of Algorithm 3. As a consequence of the inequality (212), for any(s; a) 2 S � A , one has
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where the last inequality holds due to (120). We have thus concluded the proof of LemmaD.1.

D.4.1. PROOF OF INEQUALITY (209)

To establish the inequality (209), it is suf�cient to consider the difference
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we can take this result together with (112) to yield
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It then boils down to control the above two terms in (214) separately whenN k
h = N k

h (s; a) � 1.
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Invoking the facts in (206) and (207), we arrive at
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and
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Step 2: controlling W 2
1 . Observe that Jensen's inequality gives
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; (216)

due to the fact
P N k

h
n =1 � N k

h
n = 1 (see (26) and (25)). Plugging the above relation into (214) gives
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Note that the �rst term in(217) is exactlyjU1j de�ned in (205a), which can be controlled by invoking(208) to achieve that,
with probability at least1 � � ,
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where the �nal inequality holds sinceVarh;s;a
�
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�
. H 2 and the fact in(26). In addition, the second term in

(217) can be controlled straightforwardly by
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where we have used the fact in (26),
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Taking the above two facts collectively with (217) yields
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: (219)
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Step 3: summing up. Plugging the results in (215) and (219) back into (214), we have

W1 � W 1
1 + W 2

1 .

s
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+
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N k
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;

which leads to the desired result (209) directly.

D.4.2. PROOF OF INEQUALITY (210)

To begin with, let us recall two pieces of notation that shall be used throughout this proof:

1. m(j ): the index of the epoch in which thej -th episode occurs.

2. bN epo;m
h (s; a): the value ofbN (m;L m +1)

h (s; a), representing the number of visits to(s; a) in the entirem-th epoch with
lengthL m = 2 m .

Applying (56) and taking the union bound over(m(j ); h; s; a) 2 [M ] � [H ] � S � A yield
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with probability at least1 � �=2.

For any epochm, if we denote byklast (m) the index of the last episode in them-th epoch, we can immediately see that
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2i = 2 m +1 � 2 � 2m +1 : (221)

Applying (56) again and taking the union bound over(m(j ); h; s; a) 2 [M ] � [H ] � S � A , one can guarantee that for
everyn 2 [N (m ( j )+1 ;1)
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Combine the above results to yield
8
>><

>>:
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(223)

where (i) follows from (220), (ii) and (iii) hold due to (222). As a result, we arrive at
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where the last inequality holds since
P N

i =1
� N

i
i � 2

N _ 1 (see LemmaB.1).
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D.4.3. PROOF OF INEQUALITY (211)

In this subsection, we intend to control the following term
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for all (s; a) 2 S � A . First, it is easily seen that ifN k
h = 0 , then we haveW2 = 0 and thus(211) is satis�ed. Therefore,

the remainder of the proof is devoted to verifying(211) whenN k
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we arrive at
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(224)

In the sequel, we intend to control the terms in (224) separately.

Step 1: controlling W 1
2 . The �rst termW 1

2 can be controlled by invoking LemmaB.4 and set
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andN = N k
h (s; a) = N k

h , applying LemmaB.4 with the above quantities, we have for all state-action pair(s; a) 2 S � A ,
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Step 2: controlling W 2
2 . Towards controllingW 2

2 in (224), we observe that by Jensen's inequality,
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Equipped with this relation,W 2
2 satis�es
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As for the �rst term in (226), let us set
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For any(s; a), LemmaB.4 together with the above quantities andN = N k
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with probability at least1 � � . In addition, the second term can be bounded straightforwardly by
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where the last inequality is valid since
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Step 3: combining the above results. Plugging the results in (225) and (227) into (224), we reach
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thus establishing the desired inequality (211).


